Что такое система?(домашняя работа) устройство Солнечной системы.

26.01.2024

Классификацией называется распределение некоторой совокупности объектов на классы по наиболее существенным признакам .

Признак или их совокупность , по которым объекты объединяются в классы, являются основанием классификации.

Класс – это совокупность объектов , обладающих некоторыми признаками общности .

Системы разделяются на классы по различным признакам и в зависимости от решаемой задачи можно выбирать разные принципы классификации.

Взаимодействие разных классов систем чрезвычайно сложно и требует специального исследования. Каждый класс систем подразделяется на различные подклассы, находящиеся в определенной иерархии друг к другу.

Классификации всегда относительны . Цель любой классификации систем – ограничить выбор подходов к отображению системы, сопоставить выделенным классам приемы и методы СА, дать рекомендации по выбору методов для соответствующего класса систем. При этом система может быть одновременно охарактеризована несколькими признаками , что позволяет ей найти место одновременно в разных классификациях .

Это может быть полезным при выборе методов моделирования систем. Ниже приводится классификация систем по следующим классификационным признакам.

1. По природе элементов системы делятся на реальные (материальные) и абстрактные .

Реальными (физическими) системами являются объекты, состоящие из материальных элементов. Реальные системы мы способны воспринимать – это механические, электрические, электронные, биологические, социальные и другие подклассы систем и их комбинации.

Абстрактные (идеальные) системы составляют элементы, не имеющие прямых аналогов в реальном мире . Такие системы есть продукт мышления человека , т.е. они образуются в результате творческой деятельности человека .

Пример: гипотезы, различные теории, планы, идеи, системы уравнений.

Однако, абстрактные системы , как и реальные, оказывают существенное влияние на нашу действительность.

Пример: система знаний, без которой действительность невозможна. Абстрактные знания на наших глазах могут превратиться в реальный объект (производим ПК, строим дома). Реальная система может превратиться в абстракцию (сожгли письмо – и оно осталось в наших воспоминаниях). Абстракциями являются информация, вакуум, энергия.

Значение абстрактных систем трудно переоценить.

2. В зависимости от происхождения выделяют естественные (природные) и искусственные системы (но это все материальные)

Естественные системы совокупность объектов природы (солнечная система, живой организм, почва, климат, ветер, течение и т.д.) возникли без вмешательства человека . Считают, что появление новой естественной системы – большая редкость.

Искусственные системы – это совокупность социально-экономических или технических объектов . Возникли как результат созидательности человека , количество их со временем увеличивается.

Искусственные системы отличаются от природных наличием определенных целей функционирования (т.е. назначением) и наличием управления .

Примеры: жилые дома, спортивные комплексы и т.п.

3. По длительности существования системы делятся на постоянные и временные .

С точки зрения диалектики все существующие системы временные .

Постоянные – это все естественные системы , а также искусственные, которые сохраняют в процессе заданного времени функционирования свои существенные свойства, определяемые предназначением этих систем.

4. По степени связи с внешней средой системы делятся на закрытые (замкнутые) и открытые.

Система является замкнутой , если у нее нет окружающей среды , т.е. внешних контактирующих с ней систем.

К замкнутым относятся и те системы, на которые внешние системы не оказывают существенного влияния. Замкнутые системы не обмениваются с окружающей средой веществом, но обмениваются энергией. Пример замкнутой системы – часовой механизм, локальная сеть для обработки конфиденциальной информации, космические объекты «черные дыры», натуральное хозяйство.

Замкнутые системы не должны, строго говоря, иметь не только входа, но и выхода. Все реакции таких систем однозначно объясняются изменением их состояний.

Открытой называется система, если существуют другие, связанные с ней системы, которые оказывают на нее воздействие и на которые она тоже влияет. Т.е. открытая система отличается наличием взаимодействия с внешней средой . Такая система обменивается с окружающей средой энергией и веществом (массой), и информацией.

Различие между закрытыми и открытыми системами является важным моментом в Общей Теории Систем, т.к. всякая попытка рассмотрения открытых систем как замкнутых, когда внешняя среда не принимается во внимание, таит в себе большую опасность, вплоть до катастрофической и эту опасность необходимо полностью осознать. Пример: высыхания Арала, экологическая обстановка вокруг о. Байкал, появление озоновых дыр.

Закрытых систем в природе практически не существует. Все живые системы – открытые системы. Неживые системы являются относительно замкнутыми.

Понятие открытости систем конкретизируется в каждой предметной области .

Так, в области информатики открытые информационные системы – это программно-аппаратные комплексы, которым присущи следующие свойства:

а) совместимость, т.е. возможность взаимодействовать с другими комплексами на основе развитых интерфейсов для обмена данными с прикладными задачами в других системах;

б) переносимость (мобильность) – ПО м.б. легко перенесено на различные аппаратные платформы и в различные операционные среды;

в) наращивание возможностей – это включение новых программных и технических средств, не предусмотренных в начальном варианте;

5. По характеру поведения системы делятся на системы с управлением и без управления.

С управлением – это системы, в которых реализуется процесс целеполагания и целеосуществления (обычно это искусственные системы).

Без управления – это, например, солнечная система, где траектория движения планет определяется законами механики.

6. По обладанию биологическими функциями – на живые и неживые системы.

Живые обладают биологическими функциями (рождение, смерть, воспроизводство). Иногда понятие «рождение», «смерть» связывают с неживыми системами при описании процессов, которые как бы похожи на жизненные, но не характеризуют жизнь в ее биологическом смысле (есть понятие жизненный цикл системы).

Все абстрактные системы (наука физика, идеи) являются неживыми , а реальные системы (клетки, животные, человек. растения) могут быть живыми и неживыми (ПК, ЭИС – в них существует жизненный цикл).

7. В зависимости от степени изменчивости свойств системы делятся на статические (при исследовании их можно пренебречь изменениями во времени характеристик их существенных свойств) и динамические (деление их на дискретные и непрерывные связано с выбором мат. аппарата моделирования).

Статические – это системы с одним состоянием (кристаллы).

Динамические – имеют множество возможных состояний , которые могут меняться как непрерывно (для анализа обычно применяется теория обыкновенных дифференциальных уравнений и уравнений в частных производных (переключение скорости в автомобиле)), так и дискретно. Пример: любое техническое устройство (ЭВМ, автобус и т.п.) может работать, быть на ремонте, на техобслуживании, т.е. иметь различные состояния. Для анализа таких систем используют такие математические модели, как цепи Маркова, системы массового обслуживания, сети Петри.

8. В зависимости от степени участия человека в реализации управляющих воздействий системы делятся на технические (организационно – экономические – функционируют без участия человека, например, системы автоматического управления - САУ), человеко-машинные (эргатические – функционируют с участием человека, то есть человек сопряжен с техническими устройствами, но окончательное решение принимает ЛПР, средства же автоматизации помогают ему обосновать правильность этого решения, например, АСУ, ЭИС), организационные (это социальные системы, например, общество в целом, группы, коллектив людей).

9. В зависимости от степени сложности все системы делятся на простые , сложные и большие . Такое деление подчеркивает, что в СА рассматриваются не любые, а именно сложные системы большого масштаба . Хотя понятие “большая” далеко не всегда связанно именно с размерами системы. До сих пор нет общепризнанной границы, разделяющей простые, большие и сложные системы.

При таком делении обычно выделяют структурную , функциональную (вычислительную) сложность и наличие разных по типу связей между элементами системы.

По этому признаку отличают сложные системы от больших систем , которые представляют совокупность однородных элементов, объединенных связью только одного типа .

На искусственные и естественные (природные) делятся сложные системы .

Простые системы с достаточной сложностью точности могут быть описаны известными математическими соотношениями . Их особенности в том , что каждое свойство (температура, давление) таких систем можно исследовать в отдельности в условиях классического лабораторного эксперимента, а затем описать методами традиционных технических дисциплин (радиотехника, электроника, прикладная механика – свойства: зависимость давления газа от температуры, сопротивление от емкости и т.д.)

Примеры простых систем : элементы электронных схем, электрических, отдельные детали.

Сложные системы состоят из большого числа взаимосвязанных и взаимодействующих элементов , каждый из которых может быть представлен в виде системы (подсистемы).

Сложные системы характеризуются многообразием природы элементов , связей между ними , разнородностью структуры (далее будет дано подробно это понятие) и многомерностью , т.е. большим числом составленных элементов.

Сложные системы обладают следующими свойствами :

1) свойством робастности , т.е. способностью сохранять частичную работоспособность (эффективность) при отказе отдельных элементов или подсистем;

2) свойством эмерджентности (целостности , интегративности), которое отсутствует у любой из составляющих ее частей (как уже говорилось). Т.е. отдельное рассмотрение каждого элемента не дает полного представления о сложной системе в целом . Эмерджентность может достигаться за счет обратных связей , играющих огромную (важнейшую) роль в управлении сложной системой .

Считается, что структурная сложность системы должна быть пропорциональна объему информации , необходимой для ее описания (для снятия неопределенности).

К сложной системе можно отнести систему ,обладающую , по крайней мере, одним из перечисленных признаков :

1) систему можно разбить на подсистемы и изучать каждую из них отдельно ;

2) система функционирует в условиях существенной неопределенности и воздействия среды на нее, обуславливает случайный характер изменения ее показателей;

3) система осуществляет целенаправленный выбор своего поведения.

Примеры сложных систем : живые организмы (человек), ПК, АСУ,ЭИС.

Большие системы (не по габаритам) – это сложные пространственно-временные системы, в которых подсистемы (и их составные части) относятся к категориям сложных.

Дополнительные особенности, которые характеризуют большую сложную систему:

1) большие размеры (не по габариту, а по количеству элементов);

2) сложная иерархическая структура;

3) циркуляция в системе больших информационных, энергетических и материальных потоков;

4) высокий уровень неопределенности в описании системы.

Примеры больших сложных систем : системы связи, АСУ, отрасли промышленности, система бизнеса, воинские части.

НО! Большие системы не всегда могут быть сложными (пример: трубопровод, газопровод, состоящий из большого числа отдельных звеньев – труб) (только один тип связи).

Сложные системы не всегда будут большими по габаритам (например, ПК, микропроцессор).

Сложные системы характеризуются выполняемыми процессами (функциями), структурой и поведением во времени.

Наш соотечественник математик Г.Н. Поваров делит все системы в зависимости от числа входящих в них элементов на 4 группы:

1) малые системы (10 – 10 3 элементов);

2) сложные системы (10 3 – 10 7 элементов) - АТС, транспортная система большого города;

3) ультрасложные системы (10 7 – 10 30 элементов) - организмы высших животных и человека, социальные организации;

4) суперсистемы (10 30 – 10 200 элементов) - звездная вселенная.

10. По виду научного направления , используемого для моделирования , системы делятся на математические, химические, физические и др.

Самой сложной системой на сегодняшний день считается человеческий мозг.

11. Целенаправленные, целеустремленные системы – т.е. направленные на достижение цели .

Не всегда при изучении систем можно применять понятие цель . Но при изучении экономических , организационных объектов важно выделить класс целенаправленных или целеустремленных систем (в это понятие вкладывается способность системы преследовать одну и ту же цель, изменяя свое поведение при изменении внешних условий, то есть способность проявлять адаптивность, сохраняя цель, например, крылатые ракеты летят очень низко, повторяя рельеф поверхности).

В этом классе выделяют системы, в которых цели задают извне (обычно это имеет место в закрытых (технических) системах) и системы, в которых цели формируются внутри системы (характерно для открытых самоорганизующихся систем). Для таких систем разработаны методики, помогающие формировать и анализировать структуру целей.

Существует такое понятие, как закономерности целеобразования.

12. По степени организованности системы делятся на хорошо организованные, плохо организованные (или диффузные) и самоорганизующиеся.

Отличие этой классификации от других в том, что в ней классы можно достаточно четко разграничить с помощью характерных для каждого класса признаков, которые позволяют поставить в соответствие разным классам МФПС и способы представления целей в них.

Эти выделенные классы практически следует рассматривать как подходы к отображению объекта или решаемой задачи, которые могут выбираться в зависимости от стадии познания объекта и возможности получения информации о нем.

Таким образом, определив класс системы, можно дать рекомендации по выбору метода, который позволяет более адекватно ее отобразить .

Хорошо организованные системы (ХОС)

– это системы, в которых исследователю удается определить все элементы системы и их взаимосвязи между собой и с целями системы в виде детерминированных (аналитических, графических) зависимостей.

На представление этим классом систем основано большинство моделей физических процессов, технических систем. Хотя для сложных объектов формирование таких моделей существенно зависит от ЛПР (например, атом может быть представлен в виде планетарной модели, состоящей из ядра и электронов, что упрощает реальную картину, но достаточно для понимания принципов взаимодействия элементов этой системы).

Работу сложного механизма можно отобразить упрощенной схемой или системой уравнений.

Особенность ХОС:

Проблемная ситуация может быть описана в виде выражений, связывающих цель со средствами, то есть в виде критерия функционирования, целевой функции, которые могут быть представлены в виде уравнения, формулы, системы уравнений или сложных математических моделей, включающих и уравнения, и неравенства, и т.п.

Представление объекта в виде ХОС применяется в тех случаях, когда может быть представлено детерминированное описание и экспериментально доказана адекватность модели реальному объекту или процессу.

Применять класс ХОС для представления сложных многокомпонентных объектов или многокритериальных задач, решаемых при разработке технических комплексов, совершенствования управления предприятиями и организациями не рекомендуется, так как при этом требуется недопустимо большие затраты времени на формирование модели и невозможно доказать адекватность модели .

Поэтому при представлении сложных объектов , проблем, особенно в социально-экономических системах, на начальных этапах исследования их отображают классом ПОС (диффузных) и самоорганизующихся систем.

Плохо Организованная Система (диффузная)

– при представлении объекта в виде этой системы не ставится задача определить все учитываемые элементы(компоненты) и их связи с целями системы . В этом случае на основе выборочного исследования получают характеристики или закономерности (статистические , экономические и т.п.) и распространяют эти закономерности на поведение системы в целом . При этом делаются некоторые оговорки. Например, при получении статистических закономерностей их распространяют на поведение системы с какой-то вероятностью, которая оценивается с помощью приемов математической статистики (с помощью критериев и проверок гипотез).

Пример диффузной системы: газ. Его свойства не определяют путем точного описания поведения каждой молекулы, а характеризуют газ макропараметрами (давление, проницаемость и т.д.). Основываясь на этих параметрах, разрабатывают приборы, устройства, которые используют эти свойства, но при этом не исследуется поведение каждой отдельно взятой молекулы.

Отображение объектов в виде диффузных систем находит широкое применение при определении численности штатов в обслуживающих учреждениях (ремонтных бригадах, цехах), при определении пропускной способности (автозаправки, кассы, телеграфные станции, железные дороги, аэропорт) систем разного рода (обычно в этих задачах применяются методы теории массового обслуживания), при исследовании документальных потоков информации.

Самоорганизующиеся (или развивающиеся) системы (экономические).

В них выделяют подклассы:

Саморегулирующиеся;

Самообучающиеся;

Самонастраивающиеся.

Отображение объектов в виде самоорганизующихся систем позволяет исследовать наименее изученные объекты, процессы с большой неопределенностью на начальном этапе постановки задачи.

Этот класс систем характеризуется рядом признаков, приближающих их к реальным развивающимся объектам(экономическим и социальным). Так же они обладают признаками, характерными для диффузных систем: случайностью поведения и непредсказуемостью, нестабильностью отдельных параметров, способностью адаптироваться к изменяющимся условиям среды; менять структуру, сохраняя свойствацелостности ; формировать возможные варианты поведения и выбирать из них лучший. В то же время все это вызывает неопределенность, затрудняет управление. Модели таких систем должны позволять отображать выше рассмотренные их свойства. Но при формировании таких моделей меняется привычное представление о моделях, характерное для математического моделирования, для прикладной математики. Изменяется представление и о доказательстве адекватности таких моделей (под адекватностью модели понимают ее соответствие моделируемому объекту или процессу).

Основная особенность этого класса систем – принципиальная ограниченность их формализованного описания . Эта особенность приводит к необходимости сочетания формализованных методов (МФПС) и методов качественного анализа (МАИС) и положена в основу большинства моделей и методик СА.

Основная конструктивная идея моделирования при отображении объекта классом самоорганизующихся систем следующая:

а) на начальном этапе разрабатывается знаковая система, с помощью которой фиксируют известные на данный момент элементы, компоненты системы и их связи;

б) по мере накопления знаний об объекте, процессе с помощью правил декомпозиции, структуризации получают новые, не известные ранее взаимоотношения и зависимости, которые либо подсказывают последующие шаги на пути подготовки решения, либо служат основой принимаемых решений;

в) по мере уточнения представлений об объекте, проблемной ситуации в модели системы может осуществляться постепенный переход от методов дискретной математики (теоретико-множественные, логические, лингвистические, семиотические, графические методы) к более формализованным методам – статистическим, аналитическим.

Но для класса самоорганизующихся (развивающихся) систем недостаточно знание только методов МФПС. На разных этапах моделирования могут помочь методы МАИС (метод мозговой атаки, дерева сценариев, целей, дерева решений, Делфи, экспертные методы и т.д.).

Своим названием этот класс систем обязан тому факту, что в системе как бы включен “механизм” постепенного уточнения, “развития” модели системы.

13. По виду отображаемого объекта системы делятся на технические , биологические , экономические, организационные, социальные и т.д.

14. С точки зрения принятия решений системы делятся на технические, биологические, социальные.

1. Техническая система включает оборудование, станки, компьютеры и др. работоспособные изделия, имеющие инструкции для пользователя. Методика расчета мачтовых опор для ЛЭП, решение задачи по математике, порядок включения компьютера и работа с ним – такие решения носят формализованный характер и выполняются в строго определенном порядке. Т.е. набор решений в технической системе ограничен и последствия решений обычно предопределены. Качество принятого и выполненного решения зависят от профессионализма ЛПР.

2. Биологическая система включает флору и фауну планеты, в том числе относительно замкнутые биологические подсистемы: человеческий организм, муравейник, термитник и др. эта система обладает большим разнообразием функционирования, чем техническая.

Набор решений в этой системе так же ограничен из-за медленного эволюционного развития животного и растительного мира. НО , последствия решений в биологических системах часто оказываются непредсказуемыми: решение агронома о применении тех или иных химикатов в качестве удобрений, решение врача, связанные с диагностикой новых болезней пациентов, решение применять в баллонах с распылителем газа фреона, решение спускать отходы производства в реку…

В этих системах необходима разработка нескольких альтернативных вариантов решений и выбор лучшего по каким-либо признакам. Специалист, принимающий решение, должен правильно ответить на вопрос «Что будет, если..»

Качество принятого решения зависит от профессионализма ЛПР, определяющего способностью находить надежную информацию, использовать соответствующие методы решения и выбирать лучшее из альтернативных.

3. Социальная (общественная) система характеризуется наличием человека в совокупности взаимосвязанных элементов: семья, производственный коллектив, водитель управляющий автомобилем; неформальная организация, даже 1 человек (сам по себе).

По разнообразию возникающих проблем эти системы существенно опережают биологические.

Набор решений в социальной системе характеризуется большим разнообразием в средствах и методах реализации.

Социальная система может включать биологическую и техническую, а биологическая – техническую.

Самолет - это летательный аппарат тяжелее воздуха с аэродинамическим принципом полета. Самолет представляет собой сложную динамическую систему с развитой иерархической структурой, состоящую из взаимосвязанных по назначению, месту и функционированию элементов; в нем можно выделить подсистемы создания подъемной и движущей сил, обеспечения устойчивости и управляемости, жизнеобеспечения, обеспечения выполнения целевой функции и др.

Вычислительная сеть – сложная система, которая состоит из вычислительных машин и сети передачи данных (сети связи). Основное назначение вычислительных сетей - обеспечение взаимодействия удаленных пользователей на основе обмена данными по сети и совместное использование сетевых ресурсов (вычислительных машин, прикладных программ и периферийных устройств).

Если объект обладает всеми признаками системы, то говорят, что он является системным . Приведенные примеры систем иллюстрируют наличие таких факторов системности, как:

· целостность и возможность декомпозиции на элементы (в вычислительной сети это вычислительные машины, средства связи и др.);

· наличие стабильных связей (отношений) между элементами ;

· упорядоченность (организация) элементов в определенную структуру ;

· наделение элементов параметрами;

· наличие интегративных свойств , которыми не обладают ни один из элементов системы;

· наличие множества законов, правил и операций с вышеперечисленными атрибутами системы;

· наличие цели функционирования и развития.

Системы разделяют на классы по различным признакам, и в зависимости от решаемой задачи можно выбирать разные принципы классификации. Признак или их совокупность, по которым объекты объединяются в классы, являются основанием классификации. Класс - это совокупность объек­тов, обладающих некоторыми признаками общности.

Классификаций систем в науке достаточно много. Так, например, одна из них предусматривает деление систем на два вида - абст­рактные и материальные.

Материальные системы являются объектами реального времени. Среди всего многообразия материальных сис­тем существуют естественные и искусственные системы.



Естественные системы представляют собой совокуп­ность объектов природы и подразделя­ются на астрокосмические и планетарные, физические и химические.

Искусственные системы – это со­вокупность социально-экономических или технических объектов. Они могут быть классифицирова­ны по нескольким признакам, главным из которых явля­ется роль человека в системе. По этому признаку можно выделить два класса систем: технические и организационно-экономические системы.

Абстрактные системы - это умозрительное представ­ление образов или моделей материальных систем, кото­рые подразделяются на описательные (логические) и сим­волические (математические).

Описательные системы есть результат дедуктивного или индуктивного представления материальных систем. Их можно рассматривать как системы понятий и определе­ний (совокупность представлений) о структуре, об основ­ных закономерностях состояний и о динамике матери­альных систем.

Символические системы представляют собой формали­зацию логических систем, они подразделяются на три класса:

статические математические системы или модели, которые можно рассматривать как описание средствами математического аппарата состояния материальных систем (уравнения состояния);

динамические математические системы или модели, которые можно рассматривать как математическую формализацию процессов материальных (или абстрактных) си­стем;

квазистатические (квазидинамические) системы, находящиеся в неустойчивом положении между статикой и динамикой, которые при одних воздействиях ведут себя как статические, а при других воздействиях - как дина­мические.

В научной литературе можно найти и другие типы классификаций.

· по виду отображаемого объекта - технические, биологические, социальные и т.п.;

· по характеру поведения - детерминированные, вероятностные, игровые;

· по типу целеустремленности - открытые и закрытые;

· по сложности структуры и поведения - простые и сложные;

· по виду научного направления , используемого для их моделирования - математические, физические, химические и др.;

· по степени организованности - хорошо организованные, плохо организованные и самоорганизующиеся.

Каждая система обладает определенными свойствами, связанными с ее функционированием. Наиболее часто выделяют следующие:

· синергичность - максимальный эффект деятельности системы достигается только в случае максимальной эффективности совместного функционирования её элементов для достижения общей цели;

· эмерджентность - появление у системы свойств, не присущих элементам системы; принципиальная несводимость свойства системы к сумме свойств составляющих её компонентов (неаддитивность);

· целенаправленность - наличие у системы цели (целей) и приоритет целей системы перед целями её элементов;

· альтернативность - функционирования и развития (организация или самоорганизация);

· структурность - возможна декомпозиция системы на компоненты, установление связей между ними;

· иерархичность - каждый компонент системы может рассматриваться как система; сама система также может рассматриваться как элемент некоторой надсистемы (суперсистемы);

· коммуникативность - существование сложной системы коммуникаций со средой в виде иерархии;

· адаптивность - стремление к состоянию устойчивого равновесия, которое предполагает адаптацию параметров системы к изменяющимся параметрам внешней среды;

· интегративность - наличие системообразующих, системосохраняющих факторов;

· эквифинальность - способность системы достигать состояний, не зависящих от исходных условий и определяющихся только параметрами системы.

Связь

Наибольшая смысловая нагрузка в системном анализе при­ходится на понятие «связь». Приведем примеры связей. Мозг человека развивается и состоит из 14 млрд. нервных клеток. Каждая из них имеет 5000 связей с другими. Любой закон природы и общества - это есть внут­ренняя, устойчивая, существенная связь и взаимная обусловленность явлений. Нет закона вне связи!

В диалектике проблема связи является одной из центральных. Учение диалектики о связях охватывает учение о мире как о едином связном целом, о при­чинности, о единстве и борьбе противоположностей, о взаимоотношении качества и количества, содержания и формы, сущности и явления и т.д., а основным методом исследования является анализ материала конкретных наук в плане разработки обобщающей картины мира.

Связь предметов можно определить таким образом: два или более различных предмета связаны, если по наличию или отсутствию некоторых свойств у одних из них мы можем судить о наличии или отсутствии тех или иных свойств у других из них (возникновение и исчезновение предметов можно рассматривать как частный случай). Например , температура и давление данной массы газа связаны так, что с увеличением температу­ры (при всех прочих постоянных условиях) увеличивается давление. Зная о том, что температура увеличилась, мы мо­жем делать вывод об увеличении давления (если выяснены точные количественные соотношения, то они будут учтены и в выводах).

Классификация связей может быть следующая:

1. Связи взаимодействия (координации), среди кото­рых можно различить связи свойства (такие связи фик­сируются, например, в формулах физики типа pV = const) и связи объектов (например, связи между отдельными нейронами в тех или иных нервно-психических процессах). Особый вид связей взаимодей­ствия составляют связи между отдельными людьми, а так­же между человеческими коллективами или социальны­ми системами. Специфика этих связей состоит в том, что они опосредуются целями, которые преследует каждая из сторон взаимодействия. В рамках этого типа связей можно различить кооперативные и конфликтные связи.

2. Связи порождения (генетические), когда один объект выступает как основание, вызывающие к жизни другой (например, связь типа «А отец В»).

3. Связи преобразования, среди которых можно различить: связи преобразования, реализуемые через определенный объект, обеспечивающий это преобразование (такова функция химических катализаторов), и связи преобразования, реализуемые путем непосредственного взаимодействия двух или более объектов, в процессе которо­го и благодаря которому эти объекты порознь или совместно переходят из одного состояния в другое (таково, напри­мер, взаимодействие организмов и среды в процессе видообразования).

4. Связи строения (их нередко называют структурны­ми). Природа этих связей с достаточной ясностью раскрывается на примере химических связей.

5. Связи функционирования, обеспечивающие реальную жизнедеятельность объекта или его работу, если речь идет о технической системе. Очевидное многообразие функции в объектах различного рода определяет и многообразие видов связей функционирования. Общим для всех этих видов является то, что объекты, объединяемые связью, совместно осуществляют определенную функцию, причем эта функция может характеризовать либо один из этих объектов (в таком случае другой является функциональ­но-производным от первого, как это имеет место в функ­циональных системах живого организма), либо более широ­кое целое, по отношению к которому и имеет смысл функ­циональная связь данных объектов (таковы связи между нейронами при осуществлении тех или иных функций центральной нервной системы). В самом общем виде свя­зи функционирования можно подразделить на связи со­стояний (когда следующее по времени состояние является функцией от предыдущего) и связи энергетические, трофические, нейронные и т.п. (когда объекты связаны единством реализуемой функции).

6. Связи развития, которые можно рассматривать как модификацию функциональных связей состояний, с той, однако, разницей, что развитие существенно отличается от простой смены состояний.

7. Связи управления, которые в зависимости от их кон­кретного вида могут образовывать разновидность либо функциональных связей, либо связей развития.

Предлагая такую классификацию связей, философы отмечают ее условность, объясняя исключительно слож­ным характером возможных связей и их спецификой в конкретных системах.

Таким образом, в окружающем нас мире существует очень большое количество разных связей - многомер­ных, многогранных, многозначных, многоплановых, которые мы должны учиться познавать.

Среда

Среда – сфера, ограничивающая структурное образование системы (например, человек, берущий в руки брошюру). Среда есть все то, что воздействует на систему, но неподконтрольно ей. Воздействие среды на систему – это входные воздействия, или входы (перелистывание страниц брошюры человеком). Воздействие системы на среду – это выходные воздействия, реакция системы, или выходы (воздействие брошюры на зрение, обоняние, осязание читателя).

Сложное взаимодействие системы и среды как ее окружения определяется понятиями система и надсистема. Так, человек, читающий вслух брошюру, представляет собой информационную систему, являющуюся надсистемой по отношению к брошюре.

Надсистема - более крупная система, частью которой является рассматриваемая система.

Определим некоторые основные понятия системного анализа, ибо системный стиль мышления, системный подход к рассмотрению проблем являются методологической основой методов многих (если не всех) наук.

Цель - образ несуществующего, но желаемого - с точки зрения задачи или рассматриваемой проблемы - состояния среды, т.е. такого состояния, которое позволяет решать проблему при данных ресурсах. Это - описание, представление некоторого наиболее предпочтительного состояния системы.

Пример. Основные социально-экономические цели общества:

  • экономический рост;
  • полная занятость населения;
  • экономическая эффективность производства;
  • стабильный уровень цен;
  • экономическая свобода производителей и потребителей;
  • справедливое распределение ресурсов и благ;
  • социально-экономическая обеспеченность и защищённость;
  • торговый баланс на рынке;
  • справедливая налоговая политика.

Понятие цели конкретизируется различными объектами и процессами.

Пример. Цель - функция (найти значение функции). Цель - выражение (найти аргументы, превращающие выражение в тождество). Цель - теорема (сформулировать и/или доказать теорему - т.е. найти условия превращающие сформулированное предложение в истинное высказывание). Цель - алгоритм (найти, построить последовательность действий, продукций обеспечивающих достижения требуемого состояния объекта или процесса перевода его из исходного состояния в финальное).

Целенаправленное поведение системы - поведение системы (т.е. последовательность принимаемых ею состояний), ведущее к цели системы.

Задача - некоторое множество исходных посылок (входных данных к задаче), описание цели, определенной над множеством этих данных и, может быть, описание возможных стратегий достижения этой цели или возможных промежуточных состояний исследуемого объекта.

Пример. Глобальная экономическая задача, с которой сталкивается любое общество - корректное разрешение конфликта между фактически неограниченным человеческим потреблением товаров и услуг и ограниченными ресурсами (материальными, энергетическими, информационными, людскими), которые могут быть актуализированы для удовлетворения этих потребностей. При этом рассматривают следующие основные экономические задачи общества:

  1. Что производить (какие товары и услуги)?
  2. Как производить (каким образом и где)?
  3. Для кого производить (для какого покупателя, рынка)?

Решить задачу - означает определить четко ресурсы и пути достижения указанной цели при исходных посылках.

Решение задачи - описание или представление того состояния задачи, при котором достигается указанная цель; решением задачи называют и сам процесс нахождения, описания этого состояния.

Пример. Рассмотрим следующую “задачу”: решить квадратное уравнение (или составить алгоритм его решения). Такая постановка проблемы неправильна, ибо не поставлена цель, задача, не указано, как решить задачу и что понимать в качестве решения задачи. Например, не указаны общий вид уравнения - приведенное или же не приведенное уравнение (а алгоритмы их решения - различны!). Задача также поставлена не полностью - не указан тип входных данных: вещественные или комплексные коэффициенты уравнения, не определены понятие решения, требования к решению, например, точность корня (если корень получится иррациональным, а нужно было определить его с некоторой точностью, то задача вычисления приближенного значения корня - автономная, не очень простая задача). Кроме того, можно было бы указать возможные стратегии решения - классическое (через дискриминант), по теореме Виета, оптимальным соотношением операндов и операции (см. ниже соответствующий пример в главе посвящённой алгоритмам).

Описание (спецификация) системы - это описание всех её элементов (подсистем), их взаимосвязей, цели, функции при некоторых ресурсах т.е. всех допустимых состояний.

Если входные посылки, цель, условие задачи, решение или, возможно, даже само понятие решения плохо описываемы , формализуемы, то эти задачи называются плохо формализуемыми. Поэтому при решении таких задач приходится рассматривать целый комплекс формализованных задач, с помощью которых можно исследовать эту плохо формализованную задачу. Сложность исследования таких задач - в необходимости учета различных, а часто и противоречивых критериев определения, оценки решения задачи.

Пример. Плохо формализуемыми будут, например, задачи восстановления “размытых” текстов, изображений, составления учебного расписания в любом большом вузе, составления “формулы интеллекта”, описания функционирования мозга, социума, перевода текстов с одного языка на другой с помощью ЭВМ и др.

Структура - это все то, что вносит порядок в множество объектов, т.е. совокупность связей и отношений между частями целого, необходимые для достижения цели.

Пример. Примерами структур могут быть структура извилин мозга, структура студентов на курсе, структура государственного устройства, структура кристаллической решетки вещества, структура микросхемы и др. Кристаллическая решетка алмаза - структура неживой природы; пчелиные соты, полосы зебры - структуры живой природы; озеро - структура экологической природы; партия (общественная, политическая) - структура социальной природы; Вселенная - структура как живой и неживой природы.

Структуры систем бывают разного типа, разной топологии (или же пространственной структуры). Рассмотрим основные топологии структур (систем). Соответствующие схемы приведены на рисунках ниже.

Линейные структуры:

Рис. Структура линейного типа.

Иерархические, древовидные структуры:


Рис. Структура иерархического (древовидного) типа.

Часто понятие системы предполагает наличие иерархической структуры, т.е. систему иногда определяют как иерархическую целостность.

Сетевая структура:


Рис. Структура сетевого типа.

Матричная структура:


Рис. Структура матричного типа.

Пример. Примером линейной структуры является структура станций метро на одной (не кольцевой) линии. Примером иерархической структуры является структура управления вузом: “Ректор - Проректора - Деканы - Заведующие кафедрами и подразделениями - Преподаватели кафедр и сотрудники других подразделений”. Пример сетевой структуры - структура организации строительно - монтажных работ при строительстве дома: некоторые работы, например, монтаж стен, благоустройство территории и др. можно выполнять параллельно. Пример матричной структуры - структура работников отдела НИИ выполняющих работы по одной и той же теме.

Кроме указанных основных типов структур используются и другие, образующиеся с помощью их корректных комбинаций - соединений и вложений.

Пример. “Вложение друг в друга” плоскостных матричных структур может привести к более сложной структуре - структуре пространственной матричной (например, вещества кристаллической структуры типа изображённой на рис.). Структура сплава и окружающей среды (макроструктура) могут определять свойства и структуру сплава (микроструктуру):


Рис. Структура типа кристаллической (пространственно-матричной).

Такого вида структуры часто используются в системах с тесно связанными и равноправными (“по вертикали” и “по горизонтали”) структурными связями. В частности, такую структуру могут иметь системы открытого акционерного типа, корпорации на рынке с дистрибьютерной сетью и другие.

Пример. Из комбинаций матрично-матричного типа (образуемую комбинацией “плоскостных”, например, временных матричных структур), можно получить, например, время - возрастную матричную “пространственную” структуру. Комбинация сетевых структур может дать вновь сетевую структуру. Комбинация иерархической и линейной структуры может привести как к иерархической (при “навешивании” древовидной структуры на древовидную), так и к неопределенностям (при “навешивании” древовидной структуры на линейную).

Из одинаковых элементов можно получать структуры различного типа.

Пример. Макромолекулы различных силикатов можно получать из одних и тех же элементов (Si, O) :

(а)
(б)
(в)
Рис. Структуры макромолекул из кремния и кислорода (а, б, в).

Пример. Из одних и тех же составляющих рынка (ресурсы, товары, потребители, продавцы) можно образовывать рыночные структуры различного типа: ОАО, ООО, ЗАО и др. При этом структура объединения может определять свойства, характеристики системы.

Структура является связной , если возможен обмен ресурсами между любыми двумя подсистемами системы (предполагается, что если есть обмен i- ой подсистемы с j-ой подсистемой, то есть и обмен j-ой подсистемы с i-ой.

В общем случае, можно образовывать сложные, связные m-мерные структуры (m-структуры), у которых подсистемы - (m-1)-мерные структуры. Такие m-структуры могут актуализировать связи и свойства, которые невозможно актуализировать в (m-1)-структурах и эти структуры широко используются в прикладных науках (социология, экономика и др.) - для описания и актуализации сложных взаимосвязанных многопараметрических и многокритериальных проблем и систем, в частности, для построения указанных ниже когнитивных структурных схем (когнитивных карт).

Указанного типа топологические структуры называют комплексами или симплициальными комплексами и математически их можно определить как объект K(X,Y,f) , где X - это m-структура (mD-симплекс), Y - множество событий (вершин), f - связи между X и Y или математически:

Пример. Примером простого геометрического комплекса может быть известный геометрический плоскостной (2D) граф, который состоит из вершин (отождествляются с некоторыми событиями), соединяемых между собой некоторыми одномерными дугами (отождествляются с некоторыми связями этих вершин). Сеть городов на географической карте соединенных дорогами образует плоскостной граф. Понятие математического графа - ниже.

Пример. Рассмотрим множество хороших друзей X={Иванов, Петров, Сидоров} и замечательных городов Y={Москва, Париж, Нальчик}. Тогда можно построить 3-структуру (2D-смплекс) в R3 (в пространстве трёх измерений - высота, ширина, длина), образуемую связыванием элементов X и Y, например, по принципу “кто где был” (рис.). В этой структуре использованы сетевые 2-структуры (2D-симплексы) X, Y (в которых, в свою очередь использованы 1-структуры). При этом элементы X и Y можно брать как точки (0D-симплексы)- элементы пространства нулевого измерения - R0 .


Рис. Геометрическая иллюстрация сложных связных структур.

Если структура плохо описываема или определяема, то такое множество объектов называется плохо структурируемым.

Пример. Плохо структурируемы будут проблемы описания многих исторических эпох, проблем микромира, общественных и экономических явлений, например, динамики курса валют на рынке, поведения толпы и др.

Плохо формализуемые и плохо структурируемые проблемы (системы) наиболее часто возникают на стыке различных наук, при исследовании синергетических процессов и систем.

Способность к нахождению решений в плохо формализуемых, плохо структурируемых средах - наиболее важная отличительная черта интеллектуальности (наличия интеллекта).

По отношению к людям - это способность к абстракции, по отношению к машинам или автоматам - способность к адекватной имитации каких-либо сторон интеллекта и интеллектуального поведения человека.

Интеллектуальная проблема (задача) - проблема человеческого интеллекта, целеполагания (выбора цели), планирования ресурсов (выбора необходимых ресурсов) и построения (выбора) стратегий его достижения.

Такие понятия как “интеллект”, “интеллектуальность” у специалистов различного профиля (системного анализа, информатики, нейропсихологии, психологии, философии и др.) могут несколько различаться, причём это не несёт в себе никакой опасности.

Примем, не обсуждая её положительные и отрицательные стороны, следующую “формулу интеллекта”:

“Интеллект = цель + факты + способы их применения”,

Или, в несколько более “математическом”, формализованным виде:

“Интеллект = цель + аксиомы + правила вывода из аксиом”.

Интеллектуальными системами называют такие человеко-машинные системы, которые обладают способностью выполнять (или имитировать) какие-либо интеллектуальные процедуры, например, автоматически классифицировать, распознавать объекты или образы, обеспечивать естественный интерфейс, накапливать и обрабатывать знания, делать логические выводы. Используют и другой, более старый термин - “система искусственного интеллекта”. В информатике актуальна задача повышения интеллектуальности компьютерных и программных систем, технологий и обеспечения интеллектуального интерфейса с ними. В то же время интеллектуальные системы базируются на неполных и не полностью формализуемых знаниях о предметной области, правилах вывода новых знаний, поэтому должны динамически уточняться и расширяться (в отличие от, например, формализуемых и полных математических знаний).

Понятие “система” в переводе с греческого означает “целое, составленное из частей”. Это одна из абстракций информатики и системного анализа, которую можно конкретизировать, выразить в конкретных формах.

Пример. Система теоретических принципов, положений, система государственного устройства, нервная система, производственная система. Можно дать и следующее, более полное определение системы.

Система - это средство достижения цели или все то, что необходимо для достижения цели (элементы, отношения, структура, работа, ресурсы) в некотором заданном множестве объектов (операционной среде).

Дадим теперь более строгое определение системы.

Система - множество связанных друг с другом элементов некоторого вполне определенного множества (некоторых определенных множеств), образующих целостный объект при условии задания для этих объектов и отношений между ними некоторой цели и некоторых ресурсов для достижения этой цели.

Цель, элементы, отношения или ресурсы подсистем при этом будут уже другими, отличными от указанных для всей системы.


Рис. Структура системы в общем виде.

Любая система имеет внутренние состояния, внутренний механизм преобразования входных сигналов, данных в выходные (внутреннее описание ) и внешние проявления (внешнее описание ). Внутреннее описание даёт информацию о поведении системы, о соответствии (несоответствии) внутренней структуры системы целям, подсистемам (элементам) и ресурсам в системе, внешнее описание - о взаимоотношениях с другими системами, с целями и ресурсами других систем.

Внутреннее описание системы определяет внешнее описание.

Пример. Банк образует систему. Внешняя среда банка - система инвестиций, финансирования, трудовых ресурсов, нормативов и т.д. Входные воздействия - характеристики (параметры) этой системы. Внутренние состояния системы - характеристики финансового состояния. Выходные воздействия - потоки кредитов, услуг, вложений и т.д. Функции этой системы - банковские операции, например, кредитование. Функции системы также зависят от характера взаимодействий системы и внешней среды. Множество выполняемых банком (системой) функций зависят от внешних и внутренних функций, которые могут быть описаны (представлены) некоторыми числовыми и/или нечисловыми, например, качественными, характеристиками или характеристиками смешанного, качественно - количественного характера.

Пример. Физиологическая система “Организм человека” состоит из подсистем “Кровообращение”, “Дыхание”, “Зрение” и др. Функциональная система “Кровоообращение” состоит из подсистем “Сосуды”, “Кровь”, “Артерия” и др. Физико-химическая система “Кровь” состоит из подсистем “Лейкоциты”, “Тромбоциты” и др. и так далее до уровня элементарных частиц.

Рассмотрим систему “Река” (без притоков). Представим её в виде пронумерованных участков реки (камер, подсистем) так, как это изображено на рис.


Рис. Модель реки (течение реки - от 1 к n).

Внутреннее описание системы (каждой подсистемы) может иметь вид:

где x(t,i) - объём воды в i-ой камере в момент времени t, a - коэффициент грунтового просачивания воды, b - осадки, с - испарение с поверхности камеры (a, b, c - входные параметры). Внешнее описание системы может иметь вид:

где k(x,t,i) - коэффициент, учитывающий влияние грунтового просачивания (структуру дна, берега реки), l(x,t,i) - коэффициент, учитывающий влияние осадков (интенсивность осадков), X(t) - объём воды в реке (у стока, у края последней камеры номер n).

Морфологическое описание системы - описание строения или структуры системы: описание совокупности А элементов этой системы и необходимого для достижения цели набора отношений R между ними.

Морфологическое описание задается кортежом:

где А - множество элементов и их свойств, В - множество отношений с окружающей средой, R - множество связей в А, V - структура системы, тип этой структуры, Q - описание, представление системы на каком-либо языке. Из морфологического описания системы получают функциональное описание системы (т.е. описание законов функционирования, эволюции системы), а из нее - информационное описание системы (описание информационных связей как системы с окружающей средой, так и подсистем системы) или же так называемую информационную систему, а также информационно-логическое (инфологическое) описание системы.

Пример. Морфологическое описание экосистемы может включать, в частности, структуру обитающих в ней хищников и жертв (система типа “хищники - жертвы”), их трофическую структуру (структуру типа “кто кого поедает?”) или структуру, состав пищи, обычного рациона обитателя), их свойства, связи и отношения. Трофическая структура рассматриваемой ниже экосистемы - одноуровневая, т.е. хищники и жертвы образуют две непересекающиеся совокупности X и Y со свойствами S(X) и S(Y). Возьмем в качестве языка Q морфологического описания русский язык с элементами алгебры. Тогда можно предложить следующее упрощённое модельное морфологическое описание этой экосистемы:

A={человек, тигр, коршун, щука, баран, газель, пшеница, кабан, клевер, полевая мышь (полёвка), змея, жёлудь, карась},
X={человек, тигр, коршун, щука, кабан, змея, баран},
Y={газель, пшеница, клевер, полёвка, жёлудь, карась},
S(X)={пресмыкающееся, двуногое, четырёхногое, плавающее, летающее},
S(Y)={живое существо, зерно, трава, орех},
B={обитатель суши, обитатель воды, растительность}
R={хищник, жертва}.

Если использовать результаты популяционной динамики (раздела математики, изучающей динамику, эволюцию популяций), то можно используя приведённое морфологическое описание системы записать адекватное функциональное описание системы. В частности, динамику взаимоотношений в этой системе можно записать в виде уравнений Лотка - Вольтерра:

где xi(t)-численность (плотность) i-ой популяции, b i j - коэффициент поедания i-го вида жертв j-ым видом хищников (прожорливости), ai - коэффициент рождаемости i-го вида.

Морфологическое описание системы зависит от учитываемых связей, их глубины (связи между главными подсистемами, между второстепенными подсистемами, между элементами), структуры (линейная, иерархическая, сетевая, матричная, смешанная), типа (прямая связь, обратная связь), характера (позитивная, негативная).

Пример. Морфологическое описание автомата для производства некоторого изделия может включать геометрическое описание изделия, программу (описание последовательности действий автомата), описание операционной обстановки (маршрут обработки, ограничения действий и др.). При этом это описание зависит от типа и глубины связей, структуры изделия, заготовки и др.

Информационное описание системы часто позволяет нам получать дополнительную информацию о системе, извлекать новые знания о системе, решать информационно-логические задачи, исследовать инфологические модели систем.

Пример. Рассмотрим простую информационно-логическую задачу: у Джека машина - красная, у Питера - не черная, не синяя, не голубая, у Майкла - черная и синяя, у Бэрри - белого и синего цветов, у Алекса - машины всех перечисленных цветов; у кого была какого цвета машина, если все они были на пикнике на машинах разного цвета? Ответ на этот, на первый взгляд, нелёгкий вопрос можно легко получить с помощью информационного описания системы с помощью таблицы разрешенных ситуации (таблицы состояний - рис.):

Рис. Исходная таблица состояний информационно-логической задачи

Из этой таблицы видно, что Джек был на красной машине, а следовательно, Питер мог быть только на белой машине. Отсюда следует, что Бэрри был на синей, Майкл - на черной, а Алекс - на голубой машине.

Постановка и решение информационно-логических задач - мощное средство выяснения информационных связей в системе, причинно - следственных связей, проведения аналогий, развития алгоритмического мышления, внимания и т.д.

Две системы назовём эквивалентными , если они имеют одинаковые цель, составляющие элементы, структуру. Между такими системами можно установить связь (связи) некотором конструктивным образом.

Можно также говорить об эквивалентности по цели (по элементам, по структуре) .

Пусть даны две эквивалентные системы X и Y и система X обладает структурой (или свойством, величиной) I. Если из этого следует, что и система Y обладает этой структурой (или свойством, величиной) I, то I называется инвариантом систем X и Y. Можно говорить об инвариантном содержании двух и более систем или об инвариантном погружении одной системы в другую. Инвариантность двух и более систем предполагает наличие такого инварианта.

Пример. Если рассматривать процесс познания в любой предметной области, познания любой системы, то глобальным инвариантом этого процесса является его спиралевидность. Итак, спираль познания - это инвариант любого процесса познания, независимый от внешних условий и состояний (хотя параметры спирали и его развертывание, например, скорость и крутизна развертывания зависят от этих условий). Цена - инвариант экономических отношений, экономической системы; она может определять и деньги, и стоимость, и затраты.

Основные признаки системы:

  • целостность, связность или относительная независимость от среды и систем (это наиболее существенная количественная характеристика системы), с исчезновением связности исчезает и сама система, хотя элементы системы и даже некоторые связи, отношения между ними могут быть сохранены;
  • наличие подсистем и связей между ними или наличие структуры системы (это наиболее существенная качественная характеристика системы), с исчезновением подсистем или связей между ними может исчезнуть и сама система;
  • возможность обособления или абстрагирования от окружающей среды , т.е. относительная обособленность от тех факторов среды, которые в достаточной мере не влияют на достижение цели;
  • связи с окружающей средой по обмену ресурсами;
  • подчиненность всей организации системы некоторой цели (как это, впрочем, следует из определения системы);
  • эмерджентность или несводимость свойств системы к свойствам элементов.

Подсистема должна обладать всеми свойствами системы, в частности, свойством целостности (по подцели) и эмерджентности, что отличает подсистему от компоненты системы - набора элементов, для которых не сформулирована подцель и нет целостности.

Целое - всегда есть система, а целостность всегда присуща системе, проявляясь в системе в виде симметрии, повторяемости (цикличности), адаптируемости и саморегуляции, наличии и сохранении инвариантов.

“В организованной системе каждая часть или сторона дополняет собой другие и в этом смысле нудна для них как орган целого, имеющий особое значение” (Богданов А.А.).

Кажущееся изменение целостности системы - это лишь изменение наших “точек взгляда на них”, например, изменений по времени или по пространственной координате. Целостности присуще свойство колебательности, цикличности, с определёнными законами сохранения ресурсов (вещества, энергии, информации, организации, пространственных и временных инвариантов).

Пример. В ряде экосистем, например, популяционных, изменение численности или плотности популяции представляет собой колебательный процесс, с определёнными законами сохранения, аналогичным законам сохранения и превращения энергии.

При системном анализе различных объектов, процессов, явлений необходимо пройти следующие этапы системного анализа:

  1. Формулировка целей, их приоритетов и проблем исследования.
  2. Определение и уточнение ресурсов исследования.
  3. Выделение системы (от окружающей среды) с помощью ресурсов.
  4. Определение и описание подсистем.
  5. Определение и описание целостности (связей) подсистем и их элементов.
  6. Анализ взаимосвязей подсистем.
  7. Построение структуры системы.
  8. Установление функций системы и её подсистем.
  9. Согласование целей системы с целями подсистем.
  10. Анализ (испытание) целостности системы.
  11. Анализ и оценка эмерджентности системы.
  12. Испытание системы (системной модели), её функционирования.

Когнитология - междисциплинарное (философия, нейропсихология, психология, лингвистика, информатика, математика, физика и др.) научное направление изучающее методы и модели формирования знания, познания, универсальных структурных схем мышления.

При системном анализе систем удобным инструментом их изображения является инструментарий когнитивной структуризации.

Цель когнитивной структуризации - формирование и уточнение гипотезы о функционировании исследуемой системы, т.е. структурных схем причинно- следственных связей, их количественной оценки.

Причинно-следственная связь между системами (подсистемами, элементами) А и В положительна (отрицательна), если увеличение или усиление А ведёт к увеличению или усилению (уменьшению или ослаблению) В.

Пример. Когнитивная структурная схема для анализа проблемы энергопотребления может иметь следующий вид:


Рис. Пример когнитивной карты.

Кроме когнитивных схем могут использоваться когнитивные решетки (шкалы, матрицы), которые позволяют определять стратегии поведения (например, производителя на рынке).

Решетка образуется с помощью системы факторных координат, где каждая координата соответствует одному фактору, показателю (например, финансовому) или некоторому интервалу изменения этого фактора. Каждая область решетки соответствует тому или иному поведению. Показатели могут быть относительными (например, от 0 до 1), абсолютными (например от минимального до максимального), биполярными (“высокий или большой” - “низкий или маленький)”, чёткими и нечёткими, детерминированными и недетерминированными. Такие решётки могут быть полезны, в частности, для оптимизации делового распределения основной группы налогов между федеральным и региональным бюджетами, выработки стратегии повышения бюджетного самообеспечения и др. На рис. показана одна такая решётка (в биполярной системе показателей); зона D - наиболее благоприятная, зона A - наименее благоприятная.


Рис. Когнитивная решетка финансовой устойчивости фирмы.

Когнитивный инструментарий позволяет снижать сложность исследования, формализации, структурирования, моделирования системы.

Резюмируя вышесказанное, можно дать философское, диалектическое определение системы: система - это есть часть объективной реальности, ограниченная целью (целями) и ресурсами.

Системно в мире все: практика и практические действия, знание и процесс познания, окружающая среда и связи с ней (в ней).

Любая человеческая интеллектуальная деятельность обязана быть по своей сути системной деятельностью, предусматривающей использование совокупности взаимосвязанных системных процедур на пути от постановки задачи и целей к нахождению и использованию решений.

Пример. Любое экологическое решение должно базироваться на фундаментальных принципах системного анализа, информатики, управления и учитывать поведение человека и живых организмов (включая и растений) в окружающей среде - в материально - энергетико - информационном поле т.е. на рациональных, экологически обоснованных нормах поведения в этой среде, с точки зрения “Системы” из подсистем “Человек”, “Природы” и “Космос”.

Незнание же системного анализа не позволяет знаниям (закладываемым традиционным образованием) превращаться в умения и навыки их применения, в навыки ведения системной деятельности (построения и реализации целенаправленных, структурированных, обеспеченных ресурсами или ресурсоограниченных конструктивных процедур решения проблем). Системно мыслящий и действующий человек, как правило, прогнозирует и считается с результатами своей деятельности, соизмеряет свои желания (цели) и свои возможности (ресурсы) учитывает интересы окружающей среды, развивает интеллект, вырабатывает верное мировоззрение и правильное поведение в человеческих коллективах.

Окружающий нас мир бесконечен в пространстве и во времени; в то же время человек существует конечное время и располагает при реализации любой цели только конечными ресурсами (материальными, энергетическими, информационными, людскими, организационными, пространственными и временными).

Противоречия между неограниченностью желания человека познать мир и ограниченной возможностью сделать это, между бесконечностью природы и конечностью ресурсов человечества имеют много важных последствий, в том числе, - и в самом процессе познания человеком окружающего мира. Одна из таких особенностей познания, которая позволяет постепенно, поэтапно разрешать эти противоречия - использование аналитического и синтетического образа мышления, т.е. разделения целого на части и представления сложного в виде совокупности более простых компонент и, наоборот, соединения простых и построение, таким образом, сложного. Это также относится и к индивидуальному мышлению, и к общественному сознанию, и ко всему знанию людей, и к самому процессу познания.

Пример. Аналитичность человеческого знания проявляется и в существовании различных наук, и в дифференциации наук, и в более глубоком изучении все более узких вопросов, каждый из которых сам по себе и интересен, и важен, и необходим. Вместе с тем, столь же необходим и обратный процесс синтеза знаний. Так возникают “пограничные” науки - бионика, биохимия, синергетика и другие. Однако это лишь одна из форм синтеза. Другая, более высокая форма синтетических знаний реализуется в виде наук о самых общих свойствах природы. Философия выявляет и описывает любые общие свойства всех форм материи; математика изучает некоторые, но также всеобщие, отношения. К числу синтетических относятся системные науки: системный анализ, информатика, кибернетика и др., соединяющие формальные, технические, гуманитарные и др. знания.

Итак, расчлененность мышления на анализ и синтез и взаимосвязь этих частей являются очевидными признаками системности познания.

Процесс познания структурирует системы, окружающий нас мир. Все, что не познано в данный момент времени, образует “хаос в системе”, который не может быть объясним в рамках рассматриваемой теории, заставляет искать новые структуры, новую информацию, новые формы представления и описания знаний, приводит к появлению новых ветвей знания; этот хаос развивает при этом и исследователя.

Деятельность системы может происходить в двух режимах: развитие (эволюция) и функционирование.

Функционирование - это деятельность системы без смены цели.

Развитие - это деятельность системы со сменой целей.

При функционировании, эволюции системы явно не происходит качественного изменения инфраструктуры системы; при развитии, революционировании системы ее инфраструктура качественно изменяется. Развитие - борьба организации и дезорганизации в системе и связано с накоплением и усложнением информации, её организации.

Пример. Информатизация страны в ее наивысшей стадии - всемерное использование различных баз знаний, экспертных систем, когнитивных методов и средств, моделирования, коммуникационных средств, сетей связи, обеспечение информационной а, следовательно, любой безопасности и др.; это революционное изменение общества. Компьютеризация без постановки новых проблем, т.е. “навешивание компьютеров на старые методы и технологии обработки информации” - это функционирование, а не развитие. Упадок моральных и этических ценностей в обществе, потеря цели в жизни могут привести к “функционированию” не только отдельных людей, но и социальных слоёв общества.

Любая актуализация информации связана с актуализацией вещества, энергии и наоборот.

Пример. Химическое развитие, химические реакции, энергия этих реакций в организмах людей приводят к биологическому росту, движению, накоплению биологической энергии; эта энергия - основа информационного развития, информационной энергии; последняя энергия определяет энергетику социального движения и организации в обществе.

Если в системе количественные изменения характеристик элементов и их отношений в системе приводит к качественным изменениям, то такие системы называются развивающимися системами . Такие системы имеют ряд отличительных сторон, например, могут самопроизвольно изменять свое состояние, - в соответствии со взаимодействиями с окружающей средой (как детерминировано, так и случайно). В таких системах количественный рост элементов и подсистем, связей системы приводят качественным изменениям (системы, структуры), а жизнеспособность (устойчивость) системы зависит от изменения связей между элементами (подсистемами) системы.

Пример. Развитие языка как системы зависит от развития и связей составных элементов - слово, понятие, смысл и т.д. Формула для чисел Фибоначчи: x n =x n-1 +x n-2 , n>2, x 1 =1, x 2 =1 определяет развивающуюся систему чисел.

Основные признаки развивающихся систем:

  • самопроизвольное изменение состояния системы;
  • противодействие (реакция) воздействию окружающей среде (другим системам) приводящее к изменению первоначального состояния среды;
  • постоянный поток ресурсов (постоянная работа по их перетоку) направленный против уравновешивания их потока с окружающей средой.

Если развивающаяся система развиваема за счет собственных материальных, энергетических, информационных, человеческих или организационных ресурсов внутри самой системы, то такие системы называются саморазвивающимися (самодостаточно развивающимися). Это форма развития системы - самая желательная и перспективная.

Пример. Например, если на рынке труда будет повышен спрос на квалифицированный труд, появится стремление к росту квалификации, образования, что приведет к появлению новых образовательных услуг, качественно новых форм повышения квалификации. Развитие фирмы, появление сети филиалов может привести к новым организационным формам, в частности, к компьютеризованному офису, более того, - к высшей стадии развития автоматизированного офиса - виртуальному офису или же виртуальной корпорации.

Пример. Рост пространственной структуры кристалла или развитие коралла может привести к появлению качественно новой структуры. Отметим, что одной из центральных проблем в биологии развития живых систем является проблема образования пространственной структуры, например, образование полос зебры.

Для оценки развития, развиваемости системы часто используют не только качественные, но и количественные оценки, а также и смешанного типа оценки.

Пример. В системе ООН для оценки социально - экономического развития стран используют индекс HDI (Human Devolopment Index - индекс развития человечества, человеческого потенциала), который учитывает 4 основных параметра, изменяемых от минимальных до максимальных своих значений:

  1. ожидаемая продолжительность жизни (25-85 лет);
  2. уровень неграмотности взрослого населения (0-100 %);
  3. средняя продолжительность обучения в школе (0-15 лет);
  4. годовой доход на душу населения (200-40000 $).

Эти сведения приводятся к общему значению HDI. По HDI все страны делятся на высокоразвитые, среднеразвитые и низкоразвитые. Страны с развивающимися (саморазвивающимися) экономическими, правовыми, политическими, социальными и образовательными институтами характеризуются высоким уровнем HDI. В свою очередь, изменение HDI (параметров, влияющих на него) влияет на саморазвиваемость указанных институтов, в первую очередь, - экономических, в частности, саморегулируемость спроса и предложения, отношений производителя и потребителя, товара и стоимости. Уровень HDI, наоборот, также может привести к переходу страны из одной категории (развитости по данному критерию) в другую, в частности, если в 1994 году Россия стояла на 34 месте в мире (из 200 стран), то в 1996 году - уже на 57 месте; это приводит к изменениям и во взаимоотношениях с окружающей средой, в том числе, - в политике.

Гибкость системы будем понимать как способность к структурной адаптации системы в ответ на воздействия окружающей среды.

Пример. Гибкость экономической системы - способность к структурной адаптации на изменяющиеся социально-экономические условия, способность к регулированию, к изменениям экономических характеристик и условий.

2.2. Классификация систем. Большие и сложные системы

Классификацию систем можно осуществить по разным критериям. Её часто жестко невозможно проводить и она зависит от цели и ресурсов. Приведем основные способы классификации (возможны и другие критерии классификации систем).

  1. По отношению системы к окружающей среде:
    • открытые (есть обмен с окружающей средой ресурсами);
    • закрытые (нет обмена ресурсами с окружающей средой).
  2. По происхождению системы (элементов, связей, подсистем):
    • искусственные (орудия, механизмы, машины, автоматы, роботы и т.д.);
    • естественные (живые, неживые, экологические, социальные и т.д.);
    • виртуальные (воображаемые и, хотя они в действительности реально не существующие, но функционирующие так же, как и в случае, если бы они реально существовали);
    • смешанные (экономические, биотехнические, организационные и т.д.).
  3. По описанию переменных системы:
    • с качественными переменными (имеющие только лишь содержательное описание);
    • с количественными переменными (имеющие дискретно или непрерывно описываемые количественным образом переменные);
    • смешанного (количественно - качественное) описания.
  4. По типу описания закона (законов) функционирования системы:
    • типа “Черный ящик” (неизвестен полностью закон функционирования системы; известны только входные и выходные сообщения системы);
    • не параметризованные (закон не описан, описываем с помощью хотя бы неизвестных параметров, известны лишь некоторые априорные свойства закона);
    • параметризованные (закон известен с точностью до параметров и его возможно отнести к некоторому классу зависимостей);
    • типа “Белый (прозрачный) ящик” (полностью известен закон).
  5. По способу управления системой (в системе):
    • управляемые извне системы (без обратной связи, регулируемые, управляемые структурно, информационно или функционально);
    • управляемые изнутри (самоуправляемые или саморегулируемые - программно управляемые, регулируемые автоматически, адаптируемые - приспосабливаемые с помощью управляемых изменений состояний и самоорганизующиеся - изменяющие во времени и в пространстве свою структуру наиболее оптимально, упорядочивающие свою структуру под воздействием внутренних и внешних факторов);
    • с комбинированным управлением (автоматические, полуавтоматические, автоматизированные, организационные).

Под регулированием понимается коррекция управляющих параметров по наблюдениям за траекторией поведения системы - с целью возвращения системы в нужное состояние (на нужную траекторию поведения системы; при этом под траекторией системы понимается последовательность принимаемых при функционировании системы состояний системы, которые рассматриваются как некоторые точки во множестве состояний системы).

Пример. Рассмотрим экологическую систему “Озеро”. Это открытая, естественного происхождения система, переменные которой можно описывать смешанным образом (количественно и качественно, в частности, температура водоёма - количественно описываемая характеристика), структуру обитателей озера можно описать и качественно, и количественно, а красоту озера можно описать качественно. По типу описания закона функционирования системы, эту систему можно отнести к не параметризованным в целом, хотя возможно выделение подсистем различного типа, в частности, различного описания подсистемы “Водоросли”, “Рыбы”, “Впадающий ручей”, ”Вытекающий ручей”, “Дно”, “Берег” и др. Система “Компьютер” - открытая, искусственного происхождения, смешанного описания, параметризованная, управляемая извне (программно). Система “Логический диск” - открытая, виртуальная, количественного описания, типа “Белый ящик” (при этом содержимое диска мы в эту систему не включаем!), смешанного управления. Систем “Фирма” - открытая, смешанного происхождения (организационная) и описания, управляемая изнутри (адаптируемая, в частности, система).

Система называется большой , если ее исследование или моделирование затруднено из-за большой размерности, т.е. множество состояний системы S имеет большую размерность. Какую же размерность нужно считать большой? Об этом мы можем судить только для конкретной проблемы (системы), конкретной цели исследуемой проблемы и конкретных ресурсов.

Большая система сводится к системе меньшей размерности использованием более мощных вычислительных средств (или ресурсов) либо разбиением задачи на ряд задач меньшей размерности (если это возможно).

Пример. Это особенно актуально при разработке больших вычислительных систем, например, при разработке компьютеров с параллельной архитектурой или алгоритмов с параллельной структурой данных и с их параллельной обработкой.

Система называется сложной , если в ней не хватает ресурсов (главным образом, - информационных) для эффективного описания (состояний, законов функционирования) и управления системой - определения, описания управляющих параметров или для принятия решений в таких системах (в таких системах всегда должна быть подсистема принятия решения).

Пример. Сложными системами являются, например, химические реакции, если их рассматривать на молекулярном уровне; клетка биологического образования, рассматриваемая на метаболическом уровне; мозг человека, если его рассматривать с точки зрения выполняемых человеком интеллектуальных действий; экономика, рассматриваемая на макроуровне (т.е макроэкономика); человеческое общество - на политико-религиозно- культурном уровне; ЭВМ (особенно, - пятого поколения), если её рассматривать как средство получения знаний; язык, - во многих аспектах.

Сложность этих систем обусловлена их сложным поведением. Сложность системы зависит от принятого уровня описания или изучения системы- макроскопического или микроскопического.

Сложность системы может быть внешней и внутренней.

Внутренняя сложность определяется сложностью множества внутренних состояний, потенциально оцениваемых по проявлениям системы, сложностью управления в системе.

Внешняя сложность определяется сложностью взаимоотношений с окружающей средой, сложностью управления системой потенциально оцениваемых по обратным связям системы и среды.

Сложные системы бывают:

  • сложности структурной или статической (не хватает ресурсов для построения, описания, управления структурой);
  • динамической или временной (не хватает ресурсов для описания динамики поведения системы и управления ее траекторией);
  • информационной или информационно - логической, инфологической (не хватает ресурсов для информационного, информационно-логического описания системы);
  • вычислительной или реализации, исследования (не хватает ресурсов для эффективного прогноза, расчетов параметров системы или их проведение затруднено нехваткой ресурсов);
  • алгоритмической или конструктивной (не хватает ресурсов для описания алгоритма функционирования или управления системой, для функционального описания системы);
  • развития или эволюции, самоорганизации (не хватает ресурсов для устойчивого развития, самоорганизации).

Чем сложнее рассматриваемая система, тем более разнообразные и более сложные внутренние информационные процессы приходится актуализировать для того, чтобы была достигнута цель системы, т.е. система функционировала или развивалась как система.

Пример. Поведение ряда различных реальных систем (например, соединенных между собой проводников с сопротивлениями x1, x2, ... , xn или химических соединений с концентрациями x1, x2, ... , xn участвующих в реакции химических реагентов) описывается системой линейных алгебраических уравнений, записываемых в матричном виде:

Заполненность матрицы А (ее структура, связность) будет отражать сложность описываемой системы. Если, например, матрица А - верхнетреугольная матрица (элемент, расположенный на пересечении i-ой строки и j-го столбца всегда равен 0 при i>j), то независимо от n (размерности системы) она легко исследуется на разрешимость. Для этого достаточно выполнить обратный ход метода Гаусса. Если же матрица А - общего вида (не является ни симметричной, ни ленточной, ни разреженной и т.д.), то систему сложнее исследовать (так как при этом необходимо выполнить более вычислительно и динамически сложную процедуру прямого хода метода Гаусса). Следовательно, система будет обладать структурной сложностью (которая уже может повлечь за собой и вычислительную сложность, например, при нахождении решения). Если число n достаточно велико, то неразрешимость задачи хранения матрицы А верхнетреугольного вида в оперативной памяти компьютера может стать причиной вычислительной и динамической сложности исходной задачи. Попытка использовать эти данные путём считывания с диска приведет к многократному увеличению времени счета (увеличит динамическую сложность - добавятся факторы работы с диском).

Пример. Пусть имеется динамическая система, поведение которой описывается задачей Коши вида:

Эта задача имеет решение:

Отсюда видно, что y(t) при k=10 изменяется на порядок быстрее, чем y(t) при k=1 и динамику системы сложнее будет отслеживать: более точное предсказание для t® 0 и малых c связано с дополнительными затратами на вычисления т.е. алгоритмически, информационно, динамически и структурно “не очень сложная система” (при a, k¹ 0) может стать вычислительно и, возможно, эволюционно сложной (при t® 0), а при больших t (t®¥ ) и непредсказуемой. Например, при больших t значения накапливаемых погрешностей вычислений решения могут перекрыть значения самого решения. Если при этом задавать нулевые начальные данные а¹ 0, то система может перестать быть, например, информационно несложной, особенно, если а трудно априорно определить.

Пример. Упрощение технических средств для работы в сетях, например, научные достижения, позволяющие подключать компьютер непосредственно к сети, “к розетке электрической сети” наблюдается наряду с усложнением самих сетей, например, увеличением количества абонентов и информационных потоков в Интернет. Наряду с усложнением самой сети Интернет упрощаются (для пользователя!) средства доступа к ней, увеличиваются её вычислительные возможности.

Структурная сложность системы оказывает влияние на динамическую, вычислительную сложность. Изменение динамической сложности может привести к изменениям структурной сложности, хотя это не является обязательным условием. При этом сложной системой может быть и система, не являющаяся большой системой; существенным при этом может стать связность (сила связности) элементов и подсистем системы (см. вышеприведённый пример с матрицей системы линейных алгебраических уравнений).

Само понятие сложности системы не является чем-то универсальным, неименным и может меняться динамически, от состояния к состоянию. При этом и слабые связи, взаимоотношения подсистем могут повышать сложность системы.

Пример. Рассмотрим процедуру деления единичного отрезка с последующим выкидыванием среднего из трёх отрезков и достраиванием на выкинутом отрезке равностороннего треугольника (рис.); эту процедуру будем повторять каждый раз вновь к каждому из остающихся после выкидывания отрезков. Этот процесс является структурно простым, но динамически является сложным, более того образуется динамически интересная и трудно прослеживаемая картина системы, становящейся “все больше и больше, все сложнее и сложнее”. Такого рода структуры называются фракталами или фрактальными структурами (фрактал - от fraction - дробь и fracture - излом т.е. изломанный объект с дробной размерностью). Его отличительная черта - самоподобие , т.е. сколь угодно малая часть фрактала по своей структуре подобна целому, как ветка - дереву.

Рис. Фрактальный объект (кривая Коха).

Уменьшив сложность системы можно часто увеличить её информативность, исследуемость.

Пример. Выбор рациональной проекции пространственного объекта делает чертеж более информативным. Используя в качестве устройства эксперимента микроскоп можно рассмотреть некоторые невидимые невооружённым глазом свойства объекта.

Система называется устойчивой , если она сохраняет тенденцию стремления к тому состоянию, которая наиболее соответствует целям системы, целям сохранения качества без изменения структуры или не приводящим к сильным изменениям структуры системы на некотором заданном множестве ресурсов (например, на временном интервале). Понятие “сильное изменение” каждый раз должно быть конкретизировано, детерминировано.

Пример. Рассмотрим маятник, подвешенный в некоторой точке и отклоняемый от положения равновесия на угол 0 £ j £ p . Маятник будет структурно, вычислительно, алгоритмически и информационно устойчив в любой точке, а при j =0 (состояние покоя маятника) - устойчив и динамически, эволюционно (самоорганизационные процессы в маятнике на микроуровне мы не учитываем). При отклонении от устойчивого состояния равновесия маятник, самоорганизуясь, стремится к равновесию. При j=p маятник переходит в динамически неустойчивое состояние. Если же рассматривать лёд (как систему), то при температуре таяния эта система структурно неустойчива. Рынок - при неустойчивом спросе (предложении) неустойчив структурно, эволюционно.

Система называется связной , если любые две подсистемы обмениваются ресурсом, т.е. между ними есть некоторые ресурсоориентированные отношения, связи.

2.3. Мера сложности системы

Почти во всех учебниках можно встретить словосочетания “сложная задача”, “сложная проблема”, “сложная система” и т.п. Интуитивно, как правило, под этими понятиями понимается какое-то особое поведение системы или процесса, делающее невозможным описание, исследование, предсказание поведения, развития системы. При определении меры сложности системы важно выделить инвариантные свойства систем или информационные инварианты и вводить меру сложности систем на основе их описаний.

Пусть m (S) - мера сложности или функция (критерий, шкала) заданная (заданный) на некотором множестве элементов и подсистем системы S.

Как же определять меру сложности для систем различной структуры? Ответ на этот не менее сложный вопрос не может быть однозначным и даже часто определённым. Возможны различные способы определения сложности структуры систем. Сложность структуры, можно определять топологической энтропией - сложностью конфигурации структуры (системы): S=k ln W, где k=1.38x10 -16 (эрг/град) - постоянная Больцмана, W - вероятность состояния системы. В случае разной вероятности состояний эта формула будет иметь вид (мы ниже вернёмся к детальному обсуждению этой формулы и её различных модификаций):

Пример. Определим сложность иерархической системы как число уровней иерархии. Увеличение сложности при этом требует больших ресурсов для достижения цели. Определим сложность линейной структуры как количество подсистем системы. Определим сложность сетевой структуры как максимальную из сложностей всех линейных структур соответствующих различным стратегиям достижения цели (путей ведущих от начальной подсистемы к конечной). Сложность системы с матричной структурой можно определить количеством подсистем системы. Усложнение некоторой подсистемы системы приведёт к усложнению всей системы в случае линейной структуры, возможно, - в случае иерархической, сетевой и матричной структур.

Пример. Для многоатомных молекул число межъядерных расстояний (оно определяет конфигурацию молекулы) можно считать оценкой сложности топологии (геометрической сложности) молекулы. Из химии и математики известна эта оценка: 3N-6, где N - число томов в молекуле. Для твёрдых растворов можно считать W равной числу перестановок местами атомов разных сортов в заданных позициях структуры; для чистого кристалла W=1, для смешанного - W>1. Для чистого кристалла сложность структуры S=0, а для смешанного - S>0, что и следовало ожидать.

Понятие сложности детализируется и конкретизируется в различных предметных областях по-разному. Для конкретизации этого понятия необходимо учитывать предысторию, внутреннюю структуру (сложность) системы и управления, приводящие систему к устойчивому состоянию. Впрочем все внутренние связи на практике достаточно трудно не только описать, но и обнаружить.

Пример. В эколого-экономических системах сложность системы может часто пониматься как эволюционируемость, сложность эволюции системы, в частности, мера сложности - как мера, функция изменений, происходящих в системе в результате контакта с окружающей средой и эта мера может опредляться сложностью взаимодействия между системой (организмом, организацией) и средой, её управляемости. Эволюционную сложность эволюционирующей системы можно определить как разность между внутренней сложностью и внешней сложности (сложности полного управления системой). Решения в таких системах должны приниматься (для устойчивости систем) таким образом, чтобы эволюционная сложность равнялась нулю т.е. чтобы совпадали внутренняя и внешняя сложности. Чем меньше эта разность, тем устойчивее система, например, чем более сбалансировано внутрирыночные отношения и регулирующие их управляющие государственные воздействия - тем устойчивее рынок и рыночные отношения.

Пример. В математических, формальных системах сложность системы может пониматься как алгоритмизируемость, вычислимость оператора системы S, в частности, как число операции и операндов, необходимых для получения корректного результата при любом допустимом входном наборе.

Пример. Сложность программного комплекса L может быть определена как логическая сложность и измерена в виде:

где L1 - общее число всех логических операторов, L2 - общее число всех исполняемых операторов, L3 - показатель сложности всех циклов (определяется с помощью числа циклов и их вложенности), L4 - показатель сложности циклов (он определяется числом условных операторов на каждом уровне вложенности), L5 - определяется числом ветвлений во всех условных операторах.

При исследовании сложности систем (явлений) полезно представлять (описывать) системы описанными выше симплициальными комплексами. Рассмотрим пример их использования при анализе и оценке сложности на базе примера, аналогичного примеру, приведённому в книге Дж. Касти .

Пример. Рассматривается трагедия В. Шекспира «Ромео и Джульетта». Выделим и опишем 3 совокупности: А - пьеса, акты, сцены, мизансцены; В - действующие лица; С - комментарии, пьеса, сюжет, явление, реплики. Определим иерархические уровни и элементы этих совокупностей.

  1. А:
    уровень N+2 - Пьеса;
    уровень N+1 - Акты{a1, a2, a3, a4, a5};
    уровень N - Сцены{s1, s2,..., sq};
    уровень N-1 - Мизансцены{m1, m2, ..., m26}.
  2. В:
    все уровня N - Действующие лица{c1,c2,...,c25}={Ромео, Джульетта,...}.
  3. С:
    уровень N+3 - Пролог (адресованы непосредственно зрителю и лежат вне действий разворачивающихся в пьесе);
    уровень N+2 - Пьеса;
    уровень N+1 - Сюжетные линии{p1, p2, p3, p4}={Вражда семейств Капулетти и Монтекки в Вероне, Любовь Джульетты и Ромео и их венчание, Убийство Тибальда и вражда семейств требует отмщения, Ромео вынужден скрываться, Сватание Париса к Джульетте, Трагический исход};
    уровень N - Явления{u1, u2, ..., u8}={Любовь Ромео и Джульетты, Взаимоотношения между семейством Капулетти и Монтекки, Венчание Ромео и Джульетты, Схватка Ромео и Тибальда, Ромео вынужден скрываться, Сватовство Париса, Решение Джульетты, Гибель влюблённых};
    уровень N-1 - Реплики {r1, r2, ..., r104}={104 реплики в пьесе, которые определяются как слова, обращённые к зрителю, действующему лицу и развивающие неизвестный пока зрителю сюжет}.

Отношения, связи между этими совокупностями на различных уровнях иерархии определяемы из этих совокупностей. Например, если Y - сюжеты, X - действующие лица, то естественно определить связь l между X,Y так: действующее лицо из совокупности X уровня N+1 участвует в сюжете Y уровня N+1. Тогда связность структуры трагедии можно изобразить схемой вида:


Рис. Схема структурных связей пьесы.

В этом комплексе K(Y,X) все три сюжета становятся отдельными компонентами только на уровне связности q=8. Это означает, что сюжетные линии могут быть различны только зрителями, следящими за 9 действующими лицами. Аналогично, при q=6 имеются всего 2 компоненты {p 1 ,p 2 }, {p 3 }. Следовательно, если зрители могут отслеживать только 7 персонажей, то они видят пьесу, как бы состоящую из двух сюжетов, где p 1 , p 2 (мир влюблённых и вражда семейств) объединены. В комплексе K(Y, X) при q=5 имеются 3 компоненты. Следовательно, зрители видевшие только 6 сцен воспринимают 3 сюжета, не связанные друг с другом. Сюжеты р 1 и р 2 объединяются при q=4 и поэтому зрители могут видеть эти два сюжета как один, если следят только за 5 сценами. Все 3 сюжета сливаются, когда зрители следят лишь за 3 сценами. В комплексе K(Y, X) явление u 8 доминирует структуру при q=35, u3 - при q=26, u 6 - при q=10. Следовательно, u 8 вероятнее всего поймут те зрители, которые прослушали 36 реплик, хотя для понимания u 3 необходимо 27 реплик, а для понимания u 6 - только 11 реплик. Таким образом, проведённый анализ даёт понимание сложности системы.

2.4. Управление в системе и управление системой

Управление в системе - внутренняя функция системы, осуществляемая в системе независимо от того, каким образом, какими элементами системы она должна выполняться.

Управление системой - выполнение внешних функций управления, обеспечивающих необходимые условия функционирования системы.

Управление системой (в системе) используется для различных целей:

  1. увеличения скорости передачи сообщений;
  2. увеличения объема передаваемых сообщений;
  3. уменьшения времени обработки сообщений;
  4. увеличения степени сжатия сообщений;
  5. увеличения (модификации) связей системы;
  6. увеличения информации (информированности).


Рис. Общая схема управления системой.

Если число возможных состояний системы S равно N, то общее количество разнообразия системы (мера выбора в системе - см. ниже информационные меры) равно V(N) = log 2 N.

Пусть управляемая система обладает разнообразием V(N 1), а управляющая - V(N 2). Цель управляющей системы - уменьшить значение V(N 1) за счет изменения V(N 2). В свою же очередь, изменение V(N 1), как правило, влечет изменение и V(N 2), а именно, управляющая система может эффективно выполнять присущие ей функции управления лишь при условии, если верно неравенство: V(N 2) >= V(N 1).

Это неравенство выражает принцип (Эшби) необходимого разнообразия управляемой системы: управляющая подсистема системы должна иметь более высокий уровень организации (или большее разнообразие, больший выбор), чем управляемая подсистема, т.е. многообразие может быть управляемо (разрушено) лишь многообразием.

Пример. Менеджер фирмы должен быть более подготовлен, более грамотен, организован, свободен в своих решениях, чем, например, продавец фирмы. Малые, средние фирмы, ООО, АО - необходимый фактор разнообразия, успешного развития бизнеса, так как они более динамичны, гибки, адаптируемы к рынку. В развитых рыночных системах они имеют больший вес, например, в США доля крупных корпорации не более 10 % .

Функции и задачи управления системой:

  1. Организация системы - полное, качественное выделение подсистем, описание их взаимодействий и структуры системы (как линейной, так и иерархической, сетевой или матричной).
  2. Прогнозирование поведения системы т.е. исследование будущего системы.
  3. Планирование (координация во времени, в пространстве, по информации) ресурсов и элементов, подсистем и структуры системы, необходимых (достаточных, - в случае оптимального планирования) для достижения цели системы.
  4. Учет и контроль ресурсов , приводящих к тем или иным желаемым состояниям системы.
  5. Регулирование - адаптация и приспособление системы к изменениям внешней среды.
  6. Реализация тех или иных спланированных состояний, решений.

Функции и задачи управления системой взаимосвязаны, а также взаимозависимы.

Пример. Нельзя, например, осуществлять полное планирование в экономической системе без прогнозирования, учета и контроля ресурсов, без анализа спроса и предложения - основных регуляторов рынка. Экономика любого государства - всегда управляемая система, хотя подсистемы управления могут быть организованы по-разному, иметь различные элементы, цели, структуру, отношения.

Выявление управляющих параметров и их использование для управления системой может также уменьшить сложность системы. В свою очередь, уменьшение сложности системы может сделать систему полностью управляемой.

Чем многообразнее входные сигналы (параметры) системы, число различных состояний системы, тем многообразнее обычно выходные сигналы, сложнее система, тем актуальнее проблема поиска инвариантов управления.

2.5. Эволюция и устойчивость систем

Эволюцию систем можно понимать как целенаправленное (на основе выбора) движение, изменение этих систем (как неравновесных систем) по некоторой траектории развития.

Устойчивость систем - способность системы сохранять свое движение по траектории (из точек состояний) и своё функционирование и она должна базироваться на самоподдержке, саморегулировании достаточно долго. Асимптотическая устойчивость системы состоит в возвращаемости системы к равновесному состоянию при t стремящемся к бесконечности из любого неравновесного состояния.

Пусть система S зависит от вектора факторов, переменных x=(x 1 ,x 2 ,...,x n).

Матрицей системы назовём матрицу E=||e ij || из 1 и 0: e ij =1 лишь тогда, когда переменная x i оказывает влияние на x j . Связная устойчивость состоит в асимптотической устойчивости системы при любых матрицах Е.

Эффективность системы - способность системы оптимизировать (глобально-потенциально или локально-реально) некоторый критерий эффективности, например, типа соотношений "затраты на производство - объем прибыли". Это способность системы производить ресурсоориентированный эффект и не ухудшать движение по пути к достижению поставленной цели.

Критерии эффективности системы могут быть различными.

Пример. При достаточно высоком уровне образования и развитой системе образования, научно-техническая и технологическая области последние два десятилетия слабо развивались в России, например, в США в 1996 г. на науку расходы государства составляют - 2,8-2,9 % ВВП страны, в Японии - 3,3%, в России - 0,59%. По показателю достаточности и уровню квалификации трудовых ресурсов Россия занимает 46-е место. По оценкам специалистов, если Россия в ближайшие пять лет не поднимется с 30-40 мест хотя бы на 20-е, то ее экономический крах обеспечен.

Актуальна разработка механизмов, которые обеспечивали бы устойчивое развитие общества и каждого члена в отдельности без количественного увеличения ресурсов, с помощью произведённого труда, стоимости и капитала.

Пример. Показателями развития общества могут служить ВНД - валовой национальный доход и ВНП - валовой национальный продукт, но и они не позволяют полно оценивать устойчивость развития общества, его систем, не позволяют оценивать живёт ли общество по средствам, заботясь о будущих поколениях, т.е. "кредитные социо - экономико - экологические отношения природы и общества", развитие культуры, науки и др.

Пример. Основные факторы устойчивого развития большинства экономических систем:

  • величина дефицита платежей и задолженность;
  • ритмичность и динамичность производства и потребления;
  • качество и структура экономико-правовых законов и норм, уровень взаимодействия с исполнительными, правоохранительными и финансовыми структурами, квалифицированность сотрудников, уровень систем поддержки принятия решений;
  • использование новых информационных технологий и экономических механизмов, особенно, рыночных;
  • инновационная активность и структура инновационных программ;
  • социо-экономическая иммобилизация населения, в том числе, политика возврата вывезенных и скрытых капиталов;
  • инвестиционная политика и реализация инвестиционных программ направленных на устойчивое развитие;
  • уровень государственного регулирования указанных выше факторов и др.

Развитие, управляемость и эффективность реальных систем определяются:

  • либерализацией и свободой ресурсообеспечения;
  • политической демократизацией и правовой поддержкой;
  • социальной ориентацией и иммобилизацией;
  • информационной и технологической насыщенностью и наличием систем поддержки принятия решений, уровнем перехода от эмпирических положений и утверждений к социо-экономико-математическим моделям и прогнозам (временных, пространственных, структурных).

Развиваемость, управляемость, эффективность систем определяющим образом влияет на стратегическое планирование и выработку организационных стратегий.

Стратегическое планирование в системах - ресурсообеспеченные и целенаправленные действия руководства, ведущие к разработке наилучших в каком-то смысле (локально-оптимальных, например) стратегии динамического поведения всей системы, которые приводит в окрестность поставленных целей.

Процесс стратегического планирования - инструмент помогающий принимать управленческие решения по осуществлению основных задач:

  • распределения ресурсов;
  • адаптации к изменениям внешних факторов;
  • внутренняя координация и мобилизация;
  • осознание организационных стратегий и целей (краткосрочных, среднесрочных, долгосрочных), оценка и динамическая переоценка достижимости целей.

Историческая справка

Системный подход к исследованию проблем, системный анализ - это следствие научно-технической революции, а также необходимости решения ее проблем с помощью одинаковых подходов, методов, технологий. Такие проблемы, например, как управление сложной системой, возникают и в экономике, и в информатике, и в биологии, и в политике и т.д.

Эпоха зарождения основ системного анализа была характерна рассмотрением чаще всего систем физического происхождения. При этом постулат (Аристотеля):

“Важность целого превыше важности его составляющих”

сменился через много столетий на новый постулат (Галилея):

“Целое объясняется свойствами его составляющих”.

Наибольший вклад в развитие системного анализа, системного мышления внесли такие ученые, как Р.Декарт, Ф.Бэкон, И.Кант, И.Ньютон, Ф.Энгельс, А.И.Берг, А.А.Богданов, Н.Винер, Л.Берталанфи, И.Пригожин, Н.Н.Моисеев и другие.

Наибольший вклад в изучение синергетики информационных процессов внесли А.А.Богданов, Г.Хакен, Г.Николис, И.Пригожин, И.Стенгерс, С.П.Курдюмов, Г.Г.Малиновский, Ю.М.Романовский и другие.

Вопросы для самоконтроля

  1. Что такое цель, структура, система, подсистема, системность? Приведите примеры.
  2. Что входит в понятие “интеллект”? Приведите любой пример интеллектуального процесса, обоснуйте его интеллектуальность.
  3. В чем состоит системность процесса познания? Пояснить на примерах.
  4. Укажите возможные способы описания системы и сравните их. Опишите одну систему различными способами.
  5. Какая система называется большой (сложной)? Приведите примеры. Чем определяется то, что система является большой?
  6. Чем определяется сложность системы? Приведите примеры сложных систем.
  7. Измерьте сложность какой-то системы введенной вами мерой сложности.
  8. Что такое управление системой и управление в системе? Поясните их отличия и сходства.
  9. Сформулируйте функции и задачи управления системой.
  10. Указать какую-то цель управления системой и управления в системе. Привести конкретную интерпретацию.
  11. В чем отличия и сходства развивающихся, саморазвивающихся систем. Приведите примеры.
  12. Приведите пример взаимосвязи функции и задач управления системой. Выделите параметры, с помощью которых можно управлять системой, изменять цели управления.

Наш первый пример - это система, в которой нет поступлений и есть два поглощающих (или конечных) состояния. Он был выбран с целью проиллюстрировать, что хорошая стохастическая модель имеет ряд достоинств по сравнению с приемами, которые иногда использовались для решения подобных задач. Это довольно упрощенный пример описания полной неопределенности, которая возникает после лечения заболевания раком. Пациент после лечения может по прошествии некоторого времени находиться в одном из множества состояний. Эти состояния могут классифицироваться, например, так: «здоров», «заболел вновь» (рецидив болезни), «мертв»; точность классификации, очевидно, зависит от целей исследования и от имеющихся возможностей по получению данных. Стохастическая модель описания жизни пациентов после лечения от заболевания раком была построена Фикс и Нейманом (1951) и обсуждалась в более общем виде Залем (1955). Фикс и Нейман применили эту модель для оценки эффективности лечения. Далее мы опишем, как они это делали. Отметим, кстати, что указанная модель достаточно общего вида, и у нее могут быть также другие приложения.

В модели Фикс и Неймана введены четыре состояния. Описание состояний и возможные переходы показаны на рис. 5.1. Авторы понимали

трудность определения состояния «выздоровел» и отметили, что было бы желательно некоторые из состояний разделить. Например, пациенты, находящиеся в состоянии могут быть разделены на две группы: те, кто умер по естественным (ненасильственным) причинам, и те, судьбу которых проследить не удалось.

Можно также предположить, что необходимо предусмотреть возможность перехода из состояния в состояние Мы не будем отклоняться в сторону, обсуждая эти детали, так как этот пример приведен прежде всего для того, чтобы проиллюстрировать применение теории марковских процессов к описанию жизни людей.

Первая задача в данном приложении - оценить интенсивности переходов. Для этого использовались данные о выживших, при этом сами данные были лишены недостатков, присущих в общем случае такого рода измерениям. Один из способов измерения - определение доли выживших в году. Это относительное число оставшихся в живых, по крайней мере, в течение Т лет от всех прошедших курс лечения. Такие измерения были бы удовлетворительными, если бы рак был единственной причиной смерти и если бы все больные наблюдались в течение полных Т лет. Практически так никогда не бывает, и доля выживших в году может привести к ошибочным выводам. Чтобы убедиться в неточности такого утверждения, заметим только, что измеренная интенсивность (доля) будет больше, так как следует измерить также долю тех, кто выбыл из поля зрения или умер по другим причинам, т. е. относительно большее число людей осталось бы в живых до предельного срока, если бы им суждено было умереть только от заболевания раком. Таким образом, наблюдаемые значения интенсивностей перехода зависят не только от опасности умереть от рака, но и от других причин, не имеющих отношения к заболеванию раком. Если сопоставлять по грубым интенсивностям переходов группу тех, кто прошел курс лечения, и контрольную группу, то сравнение не имело бы смысла, если бы эти две группы подвергались различным опасностям по различным причинам. Чтобы преодолеть эти естественные трудности, обычно вычисляют чистые интенсивности, которые учитывают

такие различия. Цель приведенного примера - показать, что стохастическая модель дает лучшую основу для оценки чистых интенсивностей, чем метод, используемый в страховом деле.

Интенсивности переходов между состояниями в модели Фикс и Неймана полагали постоянными величинами. Однако хорошо известно, что естественная смертность людей - непостоянная величина, и после периода младенчества она увеличивается с возрастом. В средний период жизни она не очень быстро увеличивается, и если период времени Т достаточно короткий, то предположение о постоянстве будет вполне адекватно действительности. Во всяком случае, мы покажем, что можно собирать данные таким образом, чтобы можно было проверять эти предположения. Интенсивность смерти после лечения рака разных видов широко изучается. Время жизни после лечения, как было выяснено, имеет асимметричный характер, Боаг (1949), например, сделал предположение, что оно часто может быть адекватно описано с помощью асимметричного логнормального распределения. В этом случае логнормальное распределение нелегко отличить от экспоненциального, которое появляется при постоянной интенсивности смерти. Таким образом, предположение, что интенсивность смерти от рака является постоянной величиной, вероятно, достаточно реалистично. Непосредственно проанализировать факторы, влияющие на интенсивность переходов из состояния в (выздоровление) и из состояния не представляется возможным, но кажется правдоподобным предположение о постоянстве интенсивностей потерь по разным причинам, по крайней мере для интенсивностей выпадения пациентов из поля зрения.

В нашей модели мы предполагаем, что в нулевой момент времени в состоянии находится N людей, в других состояниях людей нет. Численности людей в четырех группах в последующие моменты времени Т будут случайными величинами, которые мы обозначим через - математическое ожидание случайной величины . Наблюдая эти случайные величины в один или несколько моментов времени, можно оценить интенсивности переходов. Затем, используя оценки, можно предсказать численности различных состояний в будущем. Наиболее важна возможность оценить эти численности, если смерть от заболевания раком будет единственной причиной.

Применение теории

Расширенная матрица в описываемом случае имеет вид

где Уравнение для нахождения собственных чисел матрицы есть или

Очевидно, что это уравнение имеет два нулевых корня; два оставшихся корня, которые мы обозначим следующие:

причем для расчета возьмем положительный знак, а для - отрицательный. Тогда, используя (4.24), получим

Следующий шаг - записать и решить однородные уравнения для коэффициентов. Для начала положим будет принимать значения 2, 3 и 4. Таким образом,

Приведем три группы уравнений для и 4:

Из уравнений немедленно следует, что и, следовательно, первые уравнения в каждой группе можно опустить. Начальные условия состоят в том, что в нулевой момент времени все индивидуумы системы находятся в состоянии Предположим далее, что Если то соответствующие значения могут быть найдены просто умножением на N результата, полученного при предположении, что . Тогда в добавление к записанным выше уравнениям имеем

Для решения этих уравнений проделаем следующие преобразования. Сложим правые и левые части уравнений (5.22) и, используя начальные условия, получим

Сделав аналогичные преобразования для (5.23), будем иметь

но это уравнение может быть получено через и си из уравнения (5.23), что дает

Затем можно совместно решить однородные уравнения (5.27) и (5.28), что позволяет записать:

и, следовательно,

Сделав подобные преобразования для (5.24) и (5.25), получаем

Остается определить две константы: Используя начальные условия, находим

(5.30)

Сейчас рассмотрим, как использовать эти результаты, чтобы сравнить интенсивности выживания. Когда величина может быть интерпретирована как вероятность находиться в состоянии - в момент времени Т. Таким образом, представляют собой соответственно грубые интенсивности смерти вследствие заболевания раком и по естественным причинам. Однако зависит также от интенсивности естественной смерти и, как мы указывали выше, это уменьшает ее величину как меру риска. На самом деле нам нужна чистая мера риска (чистая интенсивность смерти), из которой устранено влияние естественной смертности. Согласно подходу к задаче, используемому в страховом деле, чистая интенсивность смерти от рака определяется по формуле

Величина (5.32) должна давать среднее число смертей от заболевания раком на интервале (0, Т), если бы смертности по естественным причинам не было. Смысл уравнения (5.32) станет яснее, если его переписать:

Второе слагаемое в правой части уравнения (5.33) - оценка численности людей, которые умерли бы от рака в течение рассматриваемого периода, если не умерли бы по другим естественным причинам. Оно получено в предположении, что смерть от рака, вероятность которой равна одной второй, предшествует естественной смерти по другим причинам. Предлагаемая модель предоставляет другой метод для оценки чистых интенсивностей смерти от рака. Мы можем исключить влияние естественной смертности, положив Тогда чистая интенсивность записывается как

где нулевые индексы в означают, что положена равной нулю.

Применение этих результатов может быть проиллюстрировано численными примерами. Возьмем следующие значения интенсивностей переходов:

Подставляя эти величины в (5.20), для примера 1 находим:

а для примера 2:

Можно выявить одну особенность, показывающую несостоятельность метода определения интенсивности смерти, принятого в страховом деле, если рассмотреть предельное поведение (5.32) при Вместо того, чтобы стремиться к единице, как следовало бы ожидать от достаточно обоснованной меры, она стремится к значению, меньшему единицы в обоих примерах. Анализ (5.32) показывает, что этот результат всегда имеет место. Очевидно также, что в общем случае при достаточно большом Т. Некоторые численные значения содержатся в табл. 5.1.

Приведенный пример - хорошая иллюстрация использования стохастической модели для измерения социального явления. Он показывает также, что коррекция измерений с позиций «здравого смысла» может существенно обесценить проведенные измерения. Высказанные доводы предполагают, что модель адекватна описываемому явлению. Если в действительности интенсивности переходов не постоянны, то более простая статистическая оценка иногда предпочтительнее, потому

Таблица 5.1. Сравнение чистых интенсивностей смерти от рака, вычисленных с помощью метода, используемого в страховом деле, и с помощью стохастической модели

что она не зависит от распределения. Как будет показано, именно грубые методы эффективны при проверке адекватности модели.

При обсуждении модели предполагалось, что интенсивности переходов известны. На практике они не бывают известными, и их необходимо оценить по имеющимся данным. Общие методы оценивания упоминались в гл. 4, но для решения нашей задачи достаточно более простого метода Фикс и Неймана. В момент времени Т мы можем зафиксировать численности пациентов в начальный момент в каждом из четырех состояний. Эти численности могут рассматриваться как оценки для , которые в свою очередь получаются при неизвестных параметрах. В обсуждаемой модели метод позволяет получить четыре уравнения для оценки неизвестных параметров. К сожалению, эти уравнения не являются линейно независимыми, так как

где N - наблюдаемое число индивидуумов. Ситуация была бы еще хуже, если бы в матрице R были другие ненулевые интенсивности. Такие трудности можно преодолеть, исследуя состояния системы в нескольких точках оси времени. Другой метод - рассматривать некоторые другие характеристики системы, например, по предложению Фикс и Неймана, подсчитывать число пациентов, оставшихся в состоянии на интервале времени . Если материал наблюдений достаточно обширен, то можно не только оценить все параметры, но и проверить качество модели. Предельная структура может быть получена непосредственно, без проведения всех описанных вычислений, так как из (5.21) результат следует немедленно.

Из уравнений (5.30) и (5.31) получаем

Остальные предельные значения равны нулю. Таким образом, имеется простая зависимость от интенсивностей переходов. Вид этой зависимости может быть легко выявлен, если записать отношение этих величин в следующей форме:

где - отношение интенсивностей переходов из состояния «определен диагноз - заболевание раком», и - отношение интенсивностей переходов из состояния «здоров». Большая интенсивность потока выздоравливающих способствует увеличению доли тех пациентов, кто умирает по другим естественным причинам, но этому в некоторой степени будет противодействовать возможность и большей интенсивности потока рецидивов

Мы уже указывали, что модель первоначально была разработана для измерения эффективности лечения. Один из способов - рассчитать - чистую долю тех, кто умер бы от рака, при исключении влияния других причин. Фикс и Нейман приводят доводы в пользу того, что не единственная, но, видимо, наиболее подходящая мера для оценки выживания. Обсуждение этого вопроса выходит за рамки данной книги, но мы коснулись его потому, что величины будут полезны для построения других мер при дальнейших исследованиях. Например, Фикс и Нейман предполагают полезным рассчитывать среднюю длительность «нормальной» жизни в период так, как если бы рак был единственной причиной смерти. Поскольку - функция распределения длительности «нормальной» жизни при отсутствии других причин смерти, математическое ожидание может быть записано так:

Иерархическая кадровая система

Модели с непрерывным временем, описывающие иерархические системы, впервые были предложены Силом (1945) и Вайдой (1948). Хотя их модели немарковские, оба автора обсуждали некоторые особые случаи, которые совпадают с теми, что следуют из нашей общей теории. Рассмотрим систему, которая представлена диаграммой на рис. 5.2. Эта система имеет одно поглощающее состояние, обозначенное Продвижение возможно только на ближайшую градацию,

что изображена на схеме, а все вновь поступающие зачисляются на первую. Расширенная матрица интенсивностей переходов для описанной системы имеет вид

Простая треугольная структура позволяет нам получить точную формулу для собственных значений и коэффициентов которые есть в выражениях для определения переходных вероятностей

Отсюда мы тотчас же находим, что

Уравнения для определения коэффициентов с, полученные из (4.19), имеют вид

Начальные условия, представленные последними двумя уравнениями, следуют из того, что все вновь прибывшие начинают свою карьеру с градации 1 - низшей ступени служебной лестницы. Решение системы уравнений (5.40) дает

Представляют интерес только значения если в этом случае из (5.3) находим

Коэффициенты, полученные из (5.40), дают

и выражения для них можно подставить в (5.42). Подобные выражения могут быть найдены при соответствующих начальных условиях, но они же легко могут быть выведены из выражений для когда имеется простая иерархическая система Вновь поступивший, который начинает свою карьеру с ступени -уровневой системы, находится в том же состоянии, что и тот, который поступил на низшую (первую) ступень -уровневой системы. Заменяя на и переобозначая интенсивности переходов, найдем необходимые выражения. Ниже мы приведем пример. Очевидно, что верхний предел суммы в последнем члене выражения

Модель, которую мы описали, несколько более общего вида, чем марковская версия модели Вайды (1948). В последней предполагалось, что интенсивности поступлений и уходов постоянны, таким образом, результаты Вайды могут быть получены из наших, если положить скажем, для Мы имеем также ожидаемые численности ступеней для любого 7, а Вайда обсуждал только предельный случай.

Как мы указывали, по нескольким причинам требуется, чтобы все величины гц ) были различны. В случае, который мы сейчас обсудим, для поэтому равные Гц встречаются при равенстве интенсивностей уходов с различных ступеней. Случай, представляющий особый интерес, появляется тогда, когда для Это соответствует ситуации, в которой интенсивности продвижения и интенсивности уходов одни и те же для всех ступеней, кроме последней. Соответствующее изменение общей теории может быть получено при стремлении друг к другу собственных значений в выражении (5.43). Окончательное выражение для будет таким.

««Моделирование и формализация» 11 класс» - Определите хорошо или плохо поставлена задача. Город будущего. Информационная модель. Тестирование. Шахматы. Инструктаж по ОТ и ТБ. Эстафета терминов. Лист самооценки. Термины к слову. Номера материальных моделей. Формула химической реакции. Составьте модели. Материальные модели. Группы меняются местами.

««Моделирование» 9 класс» - Список депутатов государственной Думы. По дороге, как ветер, промчался лимузин. Вес; цвет; форма; структура; размер. Модель человека в виде детской куклы. Перечень стран мира – это информационная модель. Описание дерева. Существующие признаки объекта. Файловая система ПК. Тест завершён. Список учащихся школы; план классных комнат.

«Моделирование и формализация» - Взаимодействие. Объект. Принцип эмерджентности. Рисунок. Приведение (сведение, предсавление)информации, связанной с выделенными свойствами, к выбранной форме. Модель неограниченного роста. Структура. Поведение. М о д е л ь. Динамические. Внешний вид. Один из основных методов познания. Система- целое, состоящих из элиментов связанных между собой.

«Моделирование, формализация, визуализация» - Формализация. Проведение компьютерного эксперимента. Основные этапы. Метод познания. Математика. Цены устройств компьютера. Типы информационных моделей. Системный подход в моделировании. Модели разбиваются на два класса. Сетевая структура. Рисунки. Два пути построения компьютерной модели. Моделирование.

«Основные этапы моделирования» - Темы проектов. Этапы. Виды моделей. Контурные. Площадные (полигональные). Структурность. Информационные процессы в обществе. Периферийные устройства компьютера. Объект. Точечные. Интегративность. Связность. Функциональность. Информационные процессы в природе. Свойства системы. Линейные. Архитектура компьютера.

«Системный подход в моделировании» - Основоположники системного подхода: Система - совокупность взаимосвязанных элементов, образующих целостность или единство. Структура- способ взаимодействия элементов системы посредством определенных связей. Основные определения системного подхода: Питер Фердинанд Дракер. Функция - работа элемента в системе.

Всего в теме 18 презентаций